D 4 4	Florida Louis Computer Francisco
Department	Electrical and Computer Engineering
Course Number	EE 206
Course Title	Circuits I
Course Designation	Required
University Catalog	Semesters offered: F,S; Prerequisites: M 172, EE 101
Description	Introduction to circuit analysis including Ohm's and Kirchhoff's Laws, nodal and
	mesh methods; network theorems; resistors, capacitors, inductors, independent and
	dependent sources, diodes; ideal operational amplifier and transistor circuits; R-L, R-C,
	and R-L-C responses; complex frequency and phasors; steady-state AC circuits.
Faculty Coordinator	Dr. James Becker
Prerequisite by Topic	Methods of differentiation and integration, analytic geometry, first order differential
	equations, use of meters and oscilloscopes
Textbook	R. Dorf & J. Svoboda: Introduction to Electric Circuits, 7 th Ed. John Wiley
Course Objectives	To produce graduates who understand the operation of electric DC resistive circuits, the
	natural and forced response of RC and RL circuits, and the operation of AC single
	phase circuits
Course Learning Outcomes	At the conclusion of EE 206, students are expected to:
	1) To analyze resistive circuits using Ohm's Law, Kirchhoff's Laws, Network
	Theorems, and Mesh and Node methods
	2) To calculate power dissipated and energy stored in circuit elements
	3) To determine the natural and step response of RL and RC circuits
	4) To analyze AC single phase circuits and compute real, reactive and complex power
	5) To breadboard electric circuits
	6) To know how to use laboratory equipment such as multimeters, signal generators
	and oscilloscopes to analyze electric circuits
Topics Covered	1) Circuit Variables and Elements
	2) Series and Parallel Combinations
	3) Kirchhoff's Laws
	4) Mesh and Node Methods
	5) Source Transformations
	6) Network Theorems
	7) Operational Amplifiers
	8) Inductors and Capacitors
	9) Natural and Step Response of RL and RC Circuits
	10) Sinusoidal Steady State Response
	11) Analysis in the Frequency Domain
	12) Single Phase AC Circuits
	13) RMS Values
	14) Power in AC Circuits
Class/Laboratory Schedule	EE 206 meets three times /week for 50 minutes plus a two-hour laboratory
	session
Professional Component	This course strongly supports the use of basic electrical and electronic circuit principles
(Criterion 5)	to analyze electric circuits
ECE Program Outcomes	EE 206 supports following Program Outcomes:
	a. an ability to apply knowledge of mathematics, science and engineering
	b. an ability to design and conduct experiments, as well as to analyze and interpret data
m . 1 0 11 17	p. an ability to analyze electrical and electronic systems
Total Credit Hours	4
Prepared by	James Becker 5/28/2009