Department	Electrical and Computer Engineering
Course Number	EE 317
Course	Linear Electronics I
Course Designation	Required
University Catalog	Semesters offered: F,S
Description	3 credit lecture, 1 credit lab
_	Prerequisite: EE 207.
	This is the first course in linear electronics. It covers: two port networks, non-ideal operational
	amplifiers, diodes, bipolar transistors, field effect transistors, and bipolar and MOS digital
	circuits.
Faculty Coordinator	Dr. David Dickensheets
Prerequisites by Topic	Linear circuit analysis, Kirchoff's current and voltage laws, node and loop analysis, RC network
	natural and forced response, Thevenin and Norton equivalents, ideal op-amps
Textbook	"Microelectronic Circuits," 5 th edition, Sedra and Smith, Oxford 1998.
Course Objectives	To produce graduates with an understanding of two-port network analysis in both time and
	frequency domain, who understand ideal and some non-ideal behavior of electronic devices
	including op-amps, diodes and transistors, and who have been exposed to modern techniques for
	circuit simulation and measurements.
Course Learning	At the conclusion of EE 317, students are expected to:
Outcomes	1) Be familiar with two-port concepts such as input and output impedance, voltage and current
	gain, transresistance and transconductance.
	2) Understand first order behavior of operational amplifiers, p-n junction diodes, BJTs and
	FETs.
	3) Evaluate simple electronic circuits to determine DC bias conditions and AC behavior.
	4) Be able to use SPICE to simulate simple electronic circuits to evaluate DC bias conditions
	and AC behavior.
	5) Be able to construct simple electronic circuits in a laboratory setting and measure DC bias
	and AC behavior using modern test and measurement tools.
Topics Covered	1. operational amplifier device properties
	2. operational amplifier circuits
	3. <i>pn</i> junction diode forward and reverse I-V characteristics
	4. Zener diodes and applications
	5. Spice modeling of <i>ph</i> junction diodes
	7 EET de bissing
	8 FFT modeled as a two-port device
	9 FET ac analysis
	10 spice modeling of FET circuits
	11. integrated circuit MOSFET circuit design concepts
	12. bipolar junction transistor (bjt)
	13. bit dc biasing
	14. bjt modeled as a two-port device
	15. bjt ac analysis
	16. common emitter, common base and common collector configurations
	17. spice modeling of bjt circuits
	18. output stage amplifiers
	19. CMOS and TTL logic building blocks
	20. CMOS and TTL properties
Class/Laboratory	Lecture 3 times per week for 50 minutes, laboratory 1 time per week for 1 hour 50 minutes.
Schedule	
Professional Component	This course develops and reinforces electronic circuit analysis and synthesis principles, and
	supports engineering practice including computer simulation tools and test and measurement
	principles.

ECE Program Outcomes	EE 317 supports the following Program Outcomes:
_	a. An ability to apply knowledge of mathematics, science, and engineering.
	b. An ability to design and conduct experiments, as well as to analyze and interpret data.
	g. An ability to communicate effectively.
	k. An ability to use the techniques, skills and modern engineering tools.
	p. An ability to analyze electrical and electronic system.
	r. An ability to analyze and synthesize electronic devices and electrical systems
Total Credit Hours	4
Prepared by	D. Dickensheets, 5/09