Department	Electrical and Computer Engineering
Course Number	FF 335
Course Title	Electromagnetic Theory II
Course Designation	Elective
University Catalog	Semesters offered: S: Prerequisites: FE 334
Description	Introduction This course provides the student the opportunity to gain more depth in
Description	EM field topics such as Maxwell's equations plane wave propagation radiation and
	antennas, and the use of the Smith Chart.
Faculty Coordinator	Dr. Todd Kaiser
Prerequisite by Topic	Sources of electric and magnetic fields, boundary conditions of electric and magnetic
4 *5 - 5 F	fields.
Textbook	Ulaby: Fundamentals of Applied Electromagnetics, 5 th Ed. Pearson-Prentice Hall, 2007
Course Objectives	To produce graduates who have an in-depth understanding of energy propagation with
	plane waves and a thorough understanding of transmission lines and the use of the
	Smith's Chart.
Course Learning Outcomes	At the conclusion of EE 335, students are expected to :
_	1) Understand Maxwell's Equations for time varying fields
	2) Understand plane wave propagation
	3) Understand the difference between TE and TM waves in terms of polarization.
	4) Understand Snell's first and second laws.
	5) Extend plane wave propagation in unbounded media to plane wave propagation in
	transmission lines.
	6) Compare the definition of impedance in unbounded media to the propagation in
	transmission lines.
	7) Use the Smith Chart for impedance calculations and impedance matching.
	8) Use bounce diagrams to describe the transient behavior of transmission lines with
	resistive loads.
	9) Understand electromagnetic radiation
Tania Comma	10) Understand transmitting and receiving antennas
l opics Covered	1) wave transmission and reflection of plane waves under both normal and oblique
	2) TEM propagation in transmission lines and wavaguidas
	 2) TEW propagation in transmission lines and waveguides. 3) Impedance calculations
	A) Standing waves
	5) Smith Charts
	6) Finite difference method
	7) Far field radiation of dipoles
	8) Arrays of dipoles.
Class/Laboratory Schedule	EE 335 meets three times /week for 50
Professional Component	This course strongly supports the use of field theory for use in antenna design and
(Criterion 5)	communications.
ECE Program Outcomes	EE 335 supports following Program Outcomes:
_	a. An ability to apply knowledge of mathematics, science, and engineering.
	e An ability to identify formulate and solve engineering problems
	σ An ability to communicate effectively
	A recognition of the need for and an ability to engage in life-long learning
	k. An ability to use the techniques skills and modern envineering tools necessary for
	engineering practice.
Total Credit Hours	3
Prepared by	Todd Kaiser 5/2009