Department	Electrical and Computer Engineering
Course Number	EE 414
Course Title	Introduction To VLSI Design
Course Designation	Elective
University Catalog	Semesters offered: F; Prerequisites: EE262, EE317
Description	Introduction to the fundamentals of CMOS VLSI circuit design. This course covers
*	CMOS device characteristics and timing, CMOS fabrication, CAD tools, design rules,
	simulation and layout, CMOS combinational and sequential logic, SRAM and DRAM
	memory, and dynamic logic design.
Faculty Coordinator	Dr. Brock J. LaMeres
Prerequisite by Topic	Linear Electronics, MOSFET transistors, combinational and sequential logic circuits.
Textbook	"CMOS Digital Integrated Circuits" 3rd Edition, Sung-Mo Kang and Yusuf Leblebici,
	McGraw Hill, 2003
Course Objectives	This course is intended to give students an introduction to the design and layout of
0	custom digital integrated circuits. Students are expected to learn how integrated circuits
	are fabricated, understand the operation of MOSFET transistors, use CAD tools to
	create mask definitions for fabrication. Students will understand logic gates, memory
	elements and testability.
Course Learning Outcomes	At the conclusion of EE 414, students are expected to :
	1) Create an integrated circuit layout from a schematic.
	2) Create a schematic from an integrated circuit layout.
	3) Perform transistor level design and layout of a custom state machine.
	4) Verify performance of CMOS circuits using hand calculations and circuit
	simulators such as Spice.
	5) Describe the photo-resist based etching process.
	6) Describe the self-aligned CMOS transistor fabrication sequence.
	7) Design a complex CMOS logic gate from a truth table.
Topics Covered	1) Fabrication of CMOS integrated circuits.
	2) Basic physical operation of a MOS transistor including depletion regions, inversion
	layers, channel inch-off, reverse bias diode capacitance and gate capacitance.
	3) Calculation of drain current using oxide capacitance, threshold voltage, mobility,
	body effect and channel length modulation.
	4) Spice Level 1 and Bsim3 model parameters.
	5) Use of MOS transistors in logic gates flip flops and memory.
	6) Complex logic gates.
	7) Flip-flops and latches.
	8) State Machine design using UNIOS Logic Gales.
	9) Integrated Circuit Layout techniques, CAD tools and computer layout checking.
	10) Parasitic SCK Laten-up and substrate contacts.
	12) Decign for text
Class/Laboratory Sabadula	12) Design for test.
Class/Laboratory Schedule	EE 414 meets two times / week for 75 minutes
Professional Component	Students use an industrial strength Spice and IC Layout CAD tool for homework
(Criterion 5)	problems and a project.
ECE Program Outcomes	EE 414 supports following Program Outcomes:
5	n/a
Total Credit Hours	3
Prepared by	Brock J. LaMeres 5/19/2009