Donortmont	Electrical and Computer Engineering
Department	Electrical and Computer Engineering
Course Number	EE 422
Course Title	Control Systems II
Course Designation	Elective
University Catalog	Semester offered: Fall
Description	3 credit lecture
	Prerequisites: EE 321
	- Introduction to techniques of modern control with emphasis on discrete time, including
	matrices, norms, state-space, and stochastic processes. Stability, Lyapunov functions,
	Lyapunov stability. Observability, controllability, reachability. State feedback and
	observers. Model-based control. Performance and robustness.
Faculty Coordinator	Dr. Steve Shaw
Prerequisites by Topic	EE 321 - Analysis, classical (Laplace transform) design and realization of linear feedback
	systems. Validation of design and demonstration of performance by computer simulation.
Textbook and Software	Text: Santina, Stubberud and Hostetter, <i>Digital Control System Design</i> 2 nd Edition, Saunders
	College Publishing, 1988
	Software: MATLAB and SIMULINK with <i>Mathworks</i> Control System Toolbox.
Course Objectives	The primary objective of this course is to provide students with an introduction to modern
course objectives	(state-space) methods for analysis, design and realization of continuous-time and discrete-
	time control systems and processes. Emphasis is placed on topics that are prerequisite for
	control systems study at the graduate level.
Course Outcomes	At the conclusion of EE 422, students are expected to be able to:
Course Outcomes	
	processes in modern control state-space form of a vector-matrix system of first order
	coupled linear differential equations.
	2) Understand and use the methods of matrix analysis for solving system state-space
	models.
	3) Understand and apply the important mathematical foundations of controllability,
	observability and reachability to traditional and optimal state-space feedback design
	methods.
	4) Transform arbitrary state-space models to their controllable, observable and Jordan
	canonical forms.
	5) Identify and obtain state-space models of non-linear systems and processes.
	6) Understand and apply the definitions and theorems of Lyapunov stability and instability
	for nonlinear and linear LTI systems.
	7) Identify, model and obtain expected state-space trajectories and corresponding n-sigma
	probability ellipses, for n-th order gauss-markov discrete random processes.
Topics Covered	1) Historical development of "modern", vector-matrix, state-space control system design
	and applications.
	2) State-Space representation of continuous and discrete LTI dynamical systems.
	3) Solution of LTI state-space models vector-matrix methods and matrix transfer
	functions.
	4) The modern control concepts of controllability, reachability and observability
	5) Full-state feedback methods.
	6) Luenberger observers for deterministic state estimation.
	7) Nonlinear time-invariant systems and the definitions and theorems (without proofs) of
	Lyapunov.
	8) Introduction to stochastic processes: 2 nd -order Gauss-markov random processes with
	white noise disturbances.
	9) Use of MATLAB, SIMULINK and the Control System Design Toolbox.
Professional Component	EE422 strongly supports and helps to further develop a strong university background in
(Criterion 5)	mathematics and science. The course demonstrates, by example, the importance of
	mathematics and basic sciences for creative engineering applications.

ECE Program Outcomes	EE 422 supports the following ECE Outcomes:
_	a. an ability to apply the knowledge of mathematics and engineering.
	b. an ability to design a system, component or process to meet desired needs.
	e. an ability to identify, formulate, and solve engineering problems.
	g. an ability to communicate effectively
	k. an ability to use the techniques and skills provided by modern engineering tools.
Total Credit Hours	3
Prepared by	Dr. Robert W. Gunderson 5/17/09