EELE 250: Circuits, Devices, and Motors

Lecture 8

Assignment Reminder

- Read 3.4 3.7, AND 4.1 4.3
- Practice problems:
 - P2.57, P2.59, P2.91 <--note that these involve controlled sources</p>
 - P3.26, P3.28, P3.48, P3.49
- D2L Quiz #4 by 11AM on Monday 23 Sept. (The quiz will be posted soon).
- REMINDER: <u>Lab #3</u> this week, then your lab notebooks will be graded by the TAs. Notebooks are due by 2:00PM on Friday 9/20/13
- Exam #1 in class on Wednesday 9/18/13

Capacitors

 A capacitor stores electric charge. The capacitor "charges up" as a current delivers charge to it.

Capacitors (cont.)

(b) Fluid-flow analogy for capacitance

Capacitors (cont.)

 Circuit symbol and polarity convention

Capacitance

Capacitance is measured in Farads

Capacitance (cont.)

• In terms of voltage:

$$v(t) = \frac{1}{C} \int_{t_0}^t i(t) dt + v(t_0)$$
$$q(t) = \int_{t_0}^t i(t) dt + q(t_0)$$

Parallel and Series

 Capacitors in parallel have the same voltage but different currents, so they act like the sum of the individual capacitances

Parallel and Series (cont.)

Capacitors

 connected in series
 share the same
 current, but have
 different voltages,
 so they combine as
 reciprocals

Summary and Review

- Capacitors store charge: they *integrate* the current as the voltage charges up
- C = q/v
- i= C dv/dt
- V = (1/C) integral i dt
- Capacitors in parallel add together, like resistors in series.
- Capacitors in series add *reciprocally*, like resistors in parallel.