EELE 250: Circuits, Devices, and Motors

Lecture 11

Assignment Reminder

- Read 4.1-4.3 AND 5.1-5.4
- Practice Problems:
- P3.60, 3.64, 3.72
- P4.3, 4.8, 4.9, 4.23, 4.37, 4.38
- D2L Quiz \#5 by 11AM on Monday 30 Sept.
- Lab \#4 will be performed next-be sure to do the pre-lab assignment calculations!

Sinusoidal Current and Voltage

- $v(t)=V_{m} \cos (\omega t+\theta)$
- $\omega=2 \pi f$ [radians / sec]
- $f=$ frequency [cycles / sec] or [Hz]
- $\mathrm{T}=1 / f=$ period $[\mathrm{sec}]$
- Root mean square (RMS) concept

Sinusoids

- Which is the correct relationship between sine and cosine?
A. $\cos (\theta)=\sin (\theta+\pi / 2)$
B. $\cos (\theta)=\sin (\theta-\pi / 2)$
C. $\cos (\theta)=\sin (\theta+\pi)$
D. $\cos (\theta)=\sin (\theta-\pi)$
E. $\cos (\theta)=-\sin (\theta)$

Sinusoids

- Which is the correct relationship between sine and cosine?

$$
\begin{aligned}
& \text { A. } \sin (\theta)=-\cos (\theta) \\
& \text { B. } \sin (\theta)=\cos (\theta+\pi / 2) \\
& \text { C. } \sin (\theta)=\cos (\theta-\pi) \\
& \text { D. } \sin (\theta)=\cos (\theta-\pi / 2) \\
& \text { E. } \sin (\theta)=\cos (\theta+\pi)
\end{aligned}
$$

Phasors

- Represent a sinusoid $v(t)=V_{1} \cos \left(\omega t+\theta_{1}\right)$ as a vector of length V_{1} and angle θ_{1} with respect to the real axis
- This vector is equivalent to a complex number real part is $V_{1} \cos \left(\theta_{1}\right)$
and imaginary part is $V_{1} \sin \left(\theta_{1}\right)$
- (Polar form vs. rectangular form)

Phasors (cont.)

Phasors (cont.)

- Circuits with sinusoidal signals often result in KVL or KCL expressions like:
$V_{1} \cos \left(\omega t+\theta_{1}\right)+V_{2} \cos \left(\omega t+\theta_{2}\right)+V_{3} \cos \left(\omega t+\theta_{3}\right)$

It is a pain to add these signals via trigonometric identities!
Fortunately, it is easier to add using phasors: add the vectors as complex numbers.

Phasors (cont.)

$V_{1} \cos \left(\omega t+\theta_{1}\right)+V_{2} \cos \left(\omega t+\theta_{2}\right)+V_{3} \cos \left(\omega t+\theta_{3}\right)$

Phasors: $V_{1} \angle \theta_{1}+V_{2} \angle \theta_{2}+V_{3} \angle \theta_{3}$
Real parts: $V_{1} \cos \left(\theta_{1}\right)+V_{2} \cos \left(\theta_{2}\right)+V_{3} \cos \left(\theta_{3}\right)$
Imag parts: $V_{1} \sin \left(\theta_{1}\right)+V_{2} \sin \left(\theta_{2}\right)+V_{3} \sin \left(\theta_{3}\right)$
Sum phasor:
sqrt(real ${ }^{2}+$ imag $\left.^{2}\right) \angle$ atan(imag/real)

Complex impedances

- Inductor: $v(t)=\mathrm{Ldi} / \mathrm{dt}$
- If $i(t)=I_{m} \cos (\omega t)$, then $v(t)=-\omega I_{m} L \sin (\omega t)$ \Rightarrow note that $-\sin (\omega t)=\cos \left(\omega t+90^{\circ}\right)$
- As phasors:

$$
I=I_{m} \angle 0^{\circ} \quad V=\omega I_{m} L \angle 90^{\circ}
$$

which means:

$$
V=\left(\omega \mathrm{L} \angle 90^{\circ}\right) \cdot(I)
$$

Note: $\omega \mathrm{L} \angle 90^{\circ}$ is the complex number $j \omega \mathrm{~L}$

Complex Impedances (cont.)

- $\boldsymbol{V}=\left(\omega L \angle 90^{\circ}\right) \cdot(I)=(j \omega L) \cdot(I)$
- Ohm's Law: $\mathrm{V}=I \cdot \mathrm{R}$, can be generalized to
$\boldsymbol{V}=\boldsymbol{I} \cdot \mathbf{Z}$, where \mathbf{Z} is the impedance.
- Z can be a real or a complex number
- Impedance of a resistor: $\mathbf{Z}=\mathrm{R}$
- Impedance of an inductor: $\mathbf{Z}=\mathrm{j} \omega \mathrm{L}$
- Impedance of a capacitor: $\mathbf{Z}=1 /(j \omega C)$

Complex Impedances (cont.)

- NOTE that the impedance of an inductor or capacitor depends upon the sinusoidal frequency, ω

$$
Z_{L}=j \omega L
$$

$$
Z_{C}=\frac{1}{j \omega C}
$$

- Impedance magnitude of inductor goes up as frequency increases
- Impedance magnitude of capacitor goes down as frequency increases

Summary and Review

- Represent a group of sinusoids with the same frequency as phasors
- Add phasors by interpreting them as complex numbers
- Generalize Ohm's Law to be $\mathbf{V}=\mathbf{I} \mathbf{Z}$
- Impedance of a resistor: $\mathbf{Z}=\mathrm{R}$
- Impedance of an inductor: $\mathbf{Z}=\mathrm{j} \omega \mathrm{L}$
- Impedance of a capacitor: Z = 1/(j $\omega \mathrm{C})$

