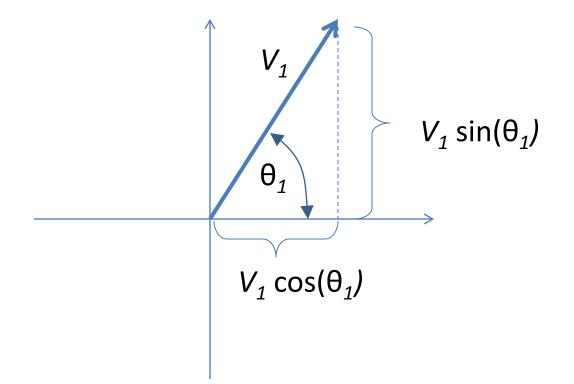
EELE 250: Circuits, Devices, and Motors

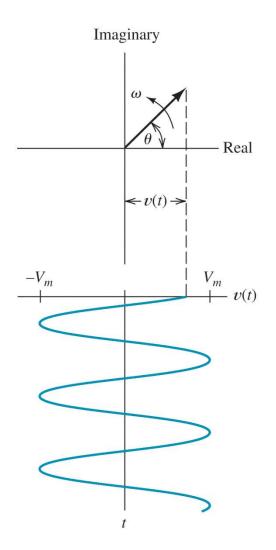
Lecture 12

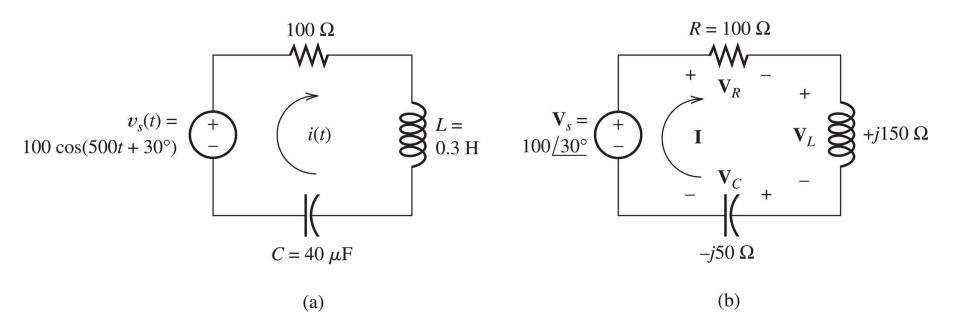

Assignment Reminder

- Read 5.1 5.6
- Practice Problems:
 - P5.16, P5.23, P5.25, P5.34, P5.38
 P5.42, P5.50, P5.52, P5.53, P5.63
- D2L Quiz #6, due by 11AM on Monday, Oct. 7.
- REMINDER: Lab #5 will be performed next week—be sure to do the pre-lab assignment calculations!
- Exam #2: in class on Wednesday 23 Oct.

Sinusoidal Current and Voltage

- Represent sinusoidal currents and voltages as phasors. Length is equal to amplitude, angle is equal to phase (cosine reference).
- Ohm's Law: V = I·R, can be generalized to
 V = I·Z, where Z is the *impedance*.
 - Impedance of a resistor: $\mathbf{Z} = \mathbf{R}$
 - Impedance of an inductor: $\mathbf{Z} = \mathbf{j} \boldsymbol{\omega} \mathbf{L}$
 - Impedance of a capacitor: $\mathbf{Z} = 1/(j \omega C)$

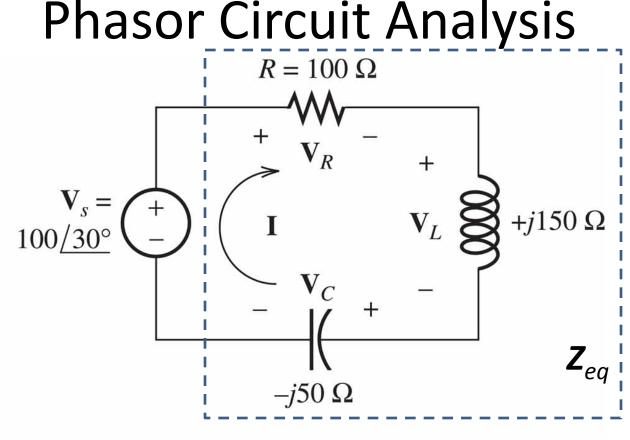

Phasors (cont.)


Visualization: Rotating Phasors

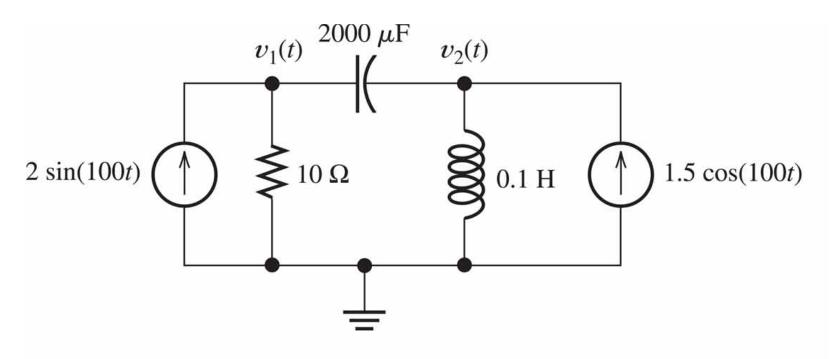
- Consider $v(t) = V_m \cdot \cos(\omega t + \theta)$
- Phasor: $V_m \angle \theta$
- We can think of the Phasor as rotating counterclockwise at rate ω radians per second
- Angle at t=0 is θ , angle at other times is $\omega t + \theta$
- Rotating Phasor: $V_m e^{j(\omega t + \theta)}$
- v(t) is the real part of the rotating phasor

Rotating Phasors (cont.)

Steady-State AC Analysis



 $Z_L = j \omega L = j 500 \cdot (0.3) = j 150 \Omega$


 Z_{C} = 1/(j ω C) = 1/(j 500 · (40µ)) = 50/j = -j 50 Ω

I = V / Z_{eq} = (100 ∠30°) / (141.4 ∠45°) = 0.707 ∠-15°

 \mathbf{Z}_{eq} = 100 + j 150 - j 50 = 100 + j 100 = 141.4 $\angle 45^{\circ}$

Phasor Analysis (cont.)

- Convert to impedances
- Write sources and node voltages as phasors
- Write node equations in terms of phasors and impedances
- Solve for phasor voltages, then re-write as time functions

Summary and Review

- Sinusoidal steady-state analysis converts resistors, inductors, and capacitors to impedances, then solve circuit using Ohm's Law, KVL, KCL, Thevenin, etc.
- Impedance of a resistor: **Z** = R
- Impedance of an inductor: $\mathbf{Z} = \mathbf{j} \boldsymbol{\omega} \mathbf{L}$
- Impedance of a capacitor: $\mathbf{Z} = 1/(j \omega C)$