EELE 250: Circuits, Devices, and Motors

Lecture 13

Assignment Reminder

- Read 5.5-5.6, 6.2, AND 10.1 - 10.6 (diodes)
- Practice problems:
- P5.63, P5.68, P5.77, P5.85
- P6.23, P6.26
- P10.7, P10.8, P10.37
- D2L Quiz \#7 will be posted this week. It is due by 11AM on Monday 14 Oct.
- REMINDER: Lab \#5 will be performed this week—be sure to do the pre-lab assignment calculations!
- Exam \#2: in class on Wednesday 23 Oct.

A few impedance questions...

- An inductor of value 0.5 henry is used in a circuit driven by a source $\mathrm{v}(\mathrm{t})=V_{m} \cdot \cos (200 t)$.
The impedance of the inductor is:
(a) $\mathrm{j}(50 / \pi)$ ohms
(b) $\mathrm{j}(100 / \pi)$ ohms
(c) j 100 ohms
(d) j 200 ohms
(e) none of the above

A few impedance questions...

- A 10 uF capacitor is used in an AC steady-state circuit. At what radian frequency is the magnitude of its impedance equal to 250Ω ?
(a) $10 \mathrm{rad} / \mathrm{sec}$
(b) $400 \mathrm{rad} / \mathrm{sec}$
(c) $250 \mathrm{rad} / \mathrm{sec}$
(d) $250 \pi \mathrm{rad} / \mathrm{sec}$
(e) $800 \pi \mathrm{rad} / \mathrm{sec}$

A few impedance questions...

- What is the equivalent impedance of the network "seen" by the source?
(a) 100Ω
(b) $\mathrm{j} 100 \Omega$
(c) $100+\mathrm{j} 100 \Omega$
(d) 150Ω
(e) $50+\mathrm{j} 50 \Omega$

Power in AC Circuits

- Power is the rate at which energy is used.
- watts = joules/second
- volts x amps =
(joules/coulomb)x(coulomb/sec)=watts

Resistive Load

- Let $v(t)=V_{m} \cdot \cos (\omega t)$
- For a resistor, $\mathrm{V}=\mathrm{IR}$, so $i(t)=I_{m} \cdot \cos (\omega t)$

$$
\left(I_{m}=V_{m} / R\right)
$$

- $p(t)=v(t) \cdot i(t)=V_{m} \cdot I_{m} \cdot \cos ^{2}(\omega t)$
- Note that v and I are in phase and $p(t) \geq 0$

Resistive Load (cont.)

Current and voltage are in phase

Power is always non-negative

Inductive Load

- Let $v(t)=V_{m} \cdot \cos (\omega t) \quad \mathbf{V}=V_{m} \angle 0^{\circ}$
- For an inductor, $\mathbf{Z}=j \omega \mathrm{~L}=\omega \mathrm{L} \angle 90^{\circ}$
- $\mathbf{I}=\mathbf{V} / \mathbf{Z}=\left(V_{m} / \omega \mathrm{L}\right) \angle-90^{\circ}$
- $i(t)=I_{m} \cdot \cos \left(\omega t-90^{\circ}\right)=I_{m} \cdot \sin (\omega t)$

$$
\left(I_{m}=V_{m} / \omega \mathrm{L}\right)
$$

- $p(t)=v(t) \cdot i(t)=V_{m} \cdot I_{m} \cdot \cos (\omega t) \cdot \sin (\omega t)$
- Note that v and i are out of phase and $p(t)$ is both positive and negative

Inductive Load (cont.)

Current lags voltage

Power is positive and negative

Capacitive Load

- Let $v(t)=V_{m} \cdot \cos (\omega t) \quad \mathbf{V}=V_{m} \angle 0^{\circ}$
- For a capacitor, $Z=1 /(j \omega C)=1 /(\omega C) \angle-90^{\circ}$
- $\mathbf{I}=\mathbf{V} / \mathbf{Z}=\left(V_{m} \omega \mathrm{C}\right) \angle 90^{\circ}$
- $i(t)=I_{m} \cdot \cos \left(\omega t+90^{\circ}\right)=-I_{m} \cdot \sin (\omega t)$

$$
\left(I_{m}=V_{m} \omega C\right)
$$

- $p(t)=v(t) \cdot i(t)=-V_{m} \cdot I_{m} \cdot \cos (\omega t) \cdot \sin (\omega t)$
- Note that v and i are out of phase and $p(t)$ is both positive and negative

Capacitive Load (cont.)

Current leads voltage

Power is positive and negative

Power for general RLC load

- In general, let
$v(t)=V_{m} \cdot \cos (\omega t)$ and $i(t)=I_{m} \cdot \cos (\omega t-\theta)$
- And thus $p(t)=V_{m} I_{m} \cdot \cos (\omega t) \cos (\omega t-\theta)$ which can be re-written as

$$
\begin{aligned}
p(t)= & (1 / 2) V_{m} I_{m} \cdot \cos (\theta)[1+\cos (2 \omega t)] \\
& +(1 / 2) V_{m} I_{m} \cdot \sin (\theta) \sin (2 \omega t)
\end{aligned}
$$

- The average power: $\mathrm{P}=(1 / 2) V_{m} I_{m} \cdot \cos (\theta)$

Power for general RLC load (cont.)

- $\mathrm{P}=(1 / 2) V_{m} I_{m} \cdot \cos (\theta)$ can be written as
$\mathrm{P}=V_{r m s} I_{r m s} \cdot \cos (\theta)$,
since for sinusoids rms = amplitude $/ \operatorname{sqrt}(2)$
- Recall that θ is the angle by which the current lags the voltage: $\theta_{v}-\theta_{i}$

$$
v->\cos (\omega t) \quad i->\cos (\omega t-\theta)
$$

- $\cos (\theta)$ is called the power factor.

Reactive Power and Power Factor

- The power factor gives an indication of average power delivery to the load.
- For a resistive load, $\theta=0$, so $\cos (\theta)=1$
- For a purely capacitive or inductive load, $\theta= \pm 90^{\circ}$, so $\cos (\theta)=0$
- The power that flows in and out of a load is called the reactive power, Q.

$$
Q=V_{r m s} I_{r m s} \cdot \sin (\theta),
$$

