EELE 250: Circuits, Devices, and Motors

Lecture 13

Assignment Reminder

- Read 5.5-5.6, 6.2, AND 10.1 10.6 (diodes)
- Practice problems:
 - P5.63, P5.68, P5.77, P5.85
 - P6.23, P6.26
 - P10.7, P10.8, P10.37
- D2L Quiz #7 will be posted this week. It is due by 11AM on Monday 14 Oct.
- REMINDER: Lab #5 will be performed this week—be sure to do the pre-lab assignment calculations!
- Exam #2: in class on Wednesday 23 Oct.

A few impedance questions...

- An inductor of value 0.5 henry is used in a circuit driven by a source $v(t) = V_m \cdot cos(200t)$.
- The impedance of the inductor is:
 - (a) $j(50/\pi)$ ohms
 - (b) j(100/π) ohms
 - (c) j100 ohms
 - (d) j200 ohms
 - (e) none of the above

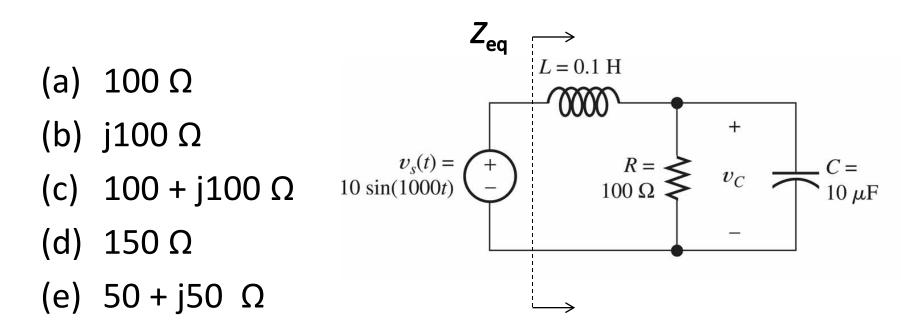
A few impedance questions...

 A 10 uF capacitor is used in an AC steady-state circuit. At what radian frequency is the *magnitude* of its impedance equal to 250 Ω ?

- (a) 10 rad/sec
- (b) 400 rad/sec
- (c) 250 rad/sec
- (d) $250\pi \text{ rad/sec}$
- (e) $800 \pi rad/sec$

A few impedance questions...

• What is the equivalent impedance of the network "seen" by the source?



Power in AC Circuits

- Power is the rate at which energy is used.
- watts = joules/second
- volts x amps = (joules/coulomb)x(coulomb/sec)=watts

Resistive Load

- Let $v(t) = V_m \cdot \cos(\omega t)$
- For a resistor, V=IR, so $i(t) = I_m \cdot \cos(\omega t)$ $(I_m = V_m/R)$

•
$$p(t) = v(t) \cdot i(t) = V_m \cdot I_m \cdot \cos^2(\omega t)$$

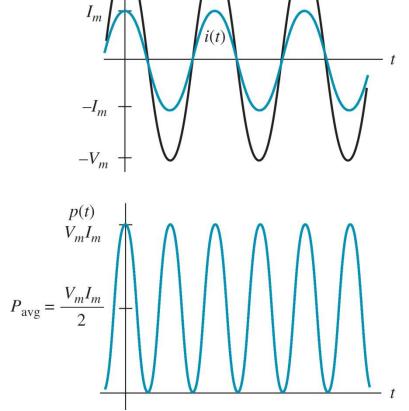
Note that v and I are in phase and p(t) ≥ 0

Resistive Load (cont.)

v(t)

 V_m

Current and voltage are in phase



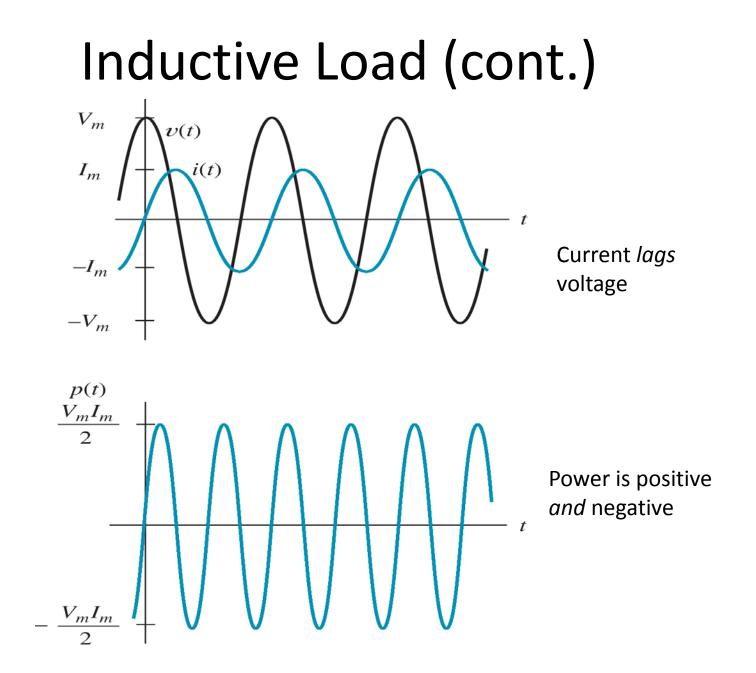
Power is always non-negative

Inductive Load

- Let $v(t) = V_m \cdot \cos(\omega t)$ $\mathbf{V} = V_m \angle 0^\circ$
- For an inductor, **Z** = j ω L = ω L \angle 90°

•
$$I = V/Z = (V_m/\omega L) \angle -90^\circ$$

- $i(t) = I_m \cdot \cos(\omega t 90^\circ) = I_m \cdot \sin(\omega t)$ $(I_m = V_m / \omega L)$
- $p(t) = v(t) \cdot i(t) = V_m \cdot I_m \cdot \cos(\omega t) \cdot \sin(\omega t)$
- Note that v and i are out of phase and p(t) is both positive and negative

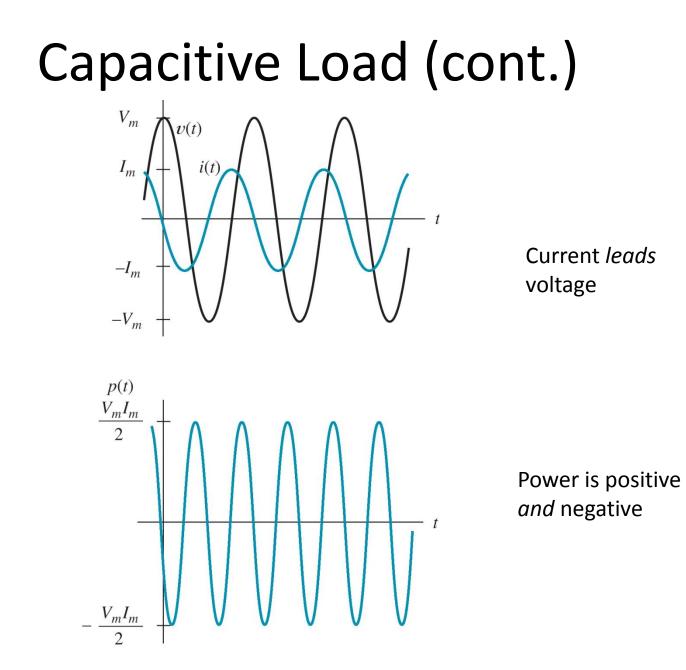


Capacitive Load

- Let $v(t) = V_m \cdot \cos(\omega t)$ $\mathbf{V} = V_m \angle 0^\circ$
- For a capacitor, $\mathbf{Z} = 1/(j\omega C) = 1/(\omega C) \angle -90^{\circ}$

•
$$I = V/Z = (V_m \omega C) \angle 90^\circ$$

- $i(t) = I_m \cdot \cos(\omega t + 90^\circ) = -I_m \cdot \sin(\omega t)$ $(I_m = V_m \omega C)$
- $p(t) = v(t) \cdot i(t) = -V_m \cdot I_m \cdot \cos(\omega t) \cdot \sin(\omega t)$
- Note that v and i are out of phase and p(t) is both positive and negative



Power for general RLC load

• In general, let

 $v(t) = V_m \cdot \cos(\omega t)$ and $i(t) = I_m \cdot \cos(\omega t - \theta)$

• And thus $p(t) = V_m I_m \cdot \cos(\omega t) \cos(\omega t - \theta)$ which can be re-written as $p(t) = (1/2)V_m I_m \cdot \cos(\theta)[1 + \cos(2\omega t)]$

+ (1/2) $V_m I_m \cdot \sin(\theta) \sin(2\omega t)$

• The *average* power: $P = (1/2)V_m I_m \cdot \cos(\theta)$

Power for general RLC load (cont.)

P = (1/2)V_m I_m · cos(θ) can be written as
 P = V_{rms} I_{rms} · cos(θ),
 since for sinusoids rms = amplitude / sqrt(2)

- Recall that θ is the angle by which the current lags the voltage: $\theta_v - \theta_i$ $v -> \cos(\omega t)$ $i -> \cos(\omega t - \theta)$
- $cos(\theta)$ is called the *power factor*.

Reactive Power and Power Factor

- The power factor gives an indication of average power delivery to the load.
- For a resistive load, $\theta = 0$, so $\cos(\theta) = 1$
- For a purely capacitive or inductive load,
 θ = ±90°, so cos(θ) = 0
- The power that flows in and out of a load is called the *reactive power*, *Q*.

 $Q = V_{rms} I_{rms} \cdot \sin(\theta),$