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Analytical Expression for Impulse Response
Between Two Nodes in 2-D Rectangular

Digital Waveguide Mesh
Zhixin Chen, Student Member, IEEE, and Robert C. Maher, Senior Member, IEEE

Abstract—The digital waveguide mesh models multidimensional
wave propagation in discrete space and time. The finite difference
wave equation used in the mesh is expressed in the space-time do-
main, which is not straightforward to reveal the analytical expres-
sion for the impulse response between a source and a receiver.
This letter describes a procedure to derive an analytical impulse
response expression between two nodes in a 2-D rectangular dig-
ital waveguide mesh based on the wave equation. The analytical
expression can provide helpful insights and help verify simulation
results for the digital waveguide mesh.

Index Terms—Acoustic propagation, digital waveguide mesh,
impulse response expression, multidimensional signal processing,
room acoustics modeling.

I. INTRODUCTION

THE DIGITAL waveguide mesh provides a numerical solu-
tion to the wave equation in multiple dimensions and, thus,

has the benefit of incorporating the effects of diffraction and
wave interference [1]–[3]. The 2-D and 3-D digital waveguide
mesh schemes have been used to simulate wave propagation in
musical instruments [4]–[6] and acoustic spaces [7], [8].

The 2-D rectangular mesh can suffer from frequency and di-
rection dependent dispersion. The error can be reduced by using
an interpolated mesh structure [9] or a triangular mesh topology
[4], [10], often in combination with a frequency warping tech-
nique [9]. The interpolated mesh structure and the triangular
mesh topology improve the performance of the mesh by mod-
ifying the finite difference expression of the wave equation.
However, the modified schemes of the wave equation are still in
the space-time domain, and it is not straightforward to find an
analytical expression for the impulse response between a source
and a receiver in the mesh. The procedure described in this letter
derives an analytical expression for the impulse response be-
tween two nodes in a 2-D rectangular mesh and verifies the sim-
ulation results of the mesh.

The remaining sections of this letter are organized as follows.
The basic topology of the 2-D rectangular mesh is briefly re-
viewed in Section II. The work deriving the analytical expres-
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Fig. 1. In the 2-D rectangular digital waveguide mesh, each node is connected
to four neighbors with unit delays.

sion of the impulse response between two nodes in a 2-D rect-
angular mesh is described in Section III. The simulation results
of the impulse responses for three arbitrary source-receiver po-
sitions using the mesh and the derived expression are compared
in Section IV. This letter is concluded in Section V.

II. THE 2-D RECTANGULAR DIGITAL WAVEGUIDE MESH

The rectangular digital waveguide mesh is a regular array of
1-D digital waveguides arranged along each perpendicular di-
mension, interconnected at their crossings by scattering nodes
with unit delay elements. A 2-D rectangular digital waveguide
mesh was originally proposed in [1] and is illustrated in Fig. 1.

The difference wave equation for 2-D rectangular mesh can
be expressed using the node values as

(1)

where represents the wave velocity signal of a node at rect-
angular coordinates at time index . Here , , and are
arbitrary integers.

III. IMPULSE RESPONSE BETWEEN TWO NODES

IN 2-D RECTANGULAR MESH

When a 2-D rectangular mesh is used for simulations, one
frequently asked question is how to obtain an expression for
the impulse response between a source at node and
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Fig. 2. An example source node S and an example receiver node R are located
in a 2-D rectangular digital waveguide mesh.

a receiver at node , i.e., how to find an
expression for the wave velocity signal at the receiver node

if an impulse signal is fed into the source node
at time index .

The impulse response question can also be mathematically
expressed as follows. Given a time-space impulse signal

, what will be the analytical expression of the received
wave velocity signal for ?
Here the time-space impulse signal is defined
as follows:

otherwise

The impulse response can certainly be simulated directly
using (1), but an analytical expression of the impulse response
can provide helpful insights and help verify the simulation
results.

In an unbounded rectangular mesh, is
equal to due to the symmetry of propaga-
tion in front of a time-space impulse signal .
Thus, without loss of generality, both and are assumed
to be nonnegative integers here. An example source-receiver
layout is shown in Fig. 2.

It should be noticed that given an initial excitation at some
node in the mesh, the excitation energy will spread out from
the excitation node more and more as the traveling waves
scatter through the nodes. This phenomenon can be described
using 2-D convolution [11]. To facilitate the analysis of the
impulse response question, one 2-D spatial signal is defined
as follows:

otherwise

According to (1), if an impulse signal is fed into the source node
at time index , the evolution of the wave velocity

signal in the nodes over time can be expressed as

(2)

where “ ” denotes 2-D convolution and
for . Here the wave velocity signal is

viewed as a 2-D spatial signal for specific time index .
Given for , using (2)

iteratively, the wave velocity can be written as

for (3)

where means the largest integer value less than or equal to
, is the binomial coefficient, and

means the fold 2-D con-

volution of with itself. The calculation of wave velocity signal
thus needs to obtain the value of the polynomials ob-

tained by self-convolving for times. Specifically, calcu-
lating the received wave velocity requires
computing what the polynomials equal at the receiver node

.
If an impulse signal is fed into the source node at time

index and continuously convolved with the 2-D signal ,
the evolution of the node value over time becomes at time
index . Therefore, given for

, the calculation of is actually solving
, i.e., solving

(4)

Von Neumann analysis can be applied to the difference equa-
tion to show the evolution of the spatial spectrum over time by
using Fourier transform theory [1], [12]. To calculate at the
receiver node , Von Neumann analysis applied
to (4) yields

(5)

where is the 2-D discrete-space Fourier transform
of , and are the spatial frequencies, is the sound
velocity, and is the temporal sampling interval.

Equation (5) can be represented using a spectral amplifica-
tion factor, . Multiplying the Fourier transform of the
solution by is equivalent to advancing the solution of
the time-domain scheme by one time step [1], [12]. Deriving

from (5) gives

(6)
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where represents the initial conditions at time index
. The amplification factor is calculated as

(7)

where and .
According to the spatial shift theorem of the 2-D Fourier

transform, to calculate the value at the receiver node
, only the coefficient of

from the polynomial needs to be computed. To
get the factor , the difference in the exponents of

and should be equal to and the difference in
the exponents of and should equal . In the 2-D
rectangular mesh, the path length of every route between the
source node and the receiver node
is always an even or an odd number of unit delays, so the
coefficient of is equal to 0 for every other time
step. In addition, the coefficient of equals 0 for
the time index since it takes time steps for
the input to propagate from the source to the receiver. Based
on these considerations, expanding the bracketed expression
in , the
factor is only included in the polynomial

where , . The coefficient of
in each term is calculated as follows:

where (8)

According to the shift theorem of the 2-D Fourier transform,
the value of at the receiver node is ex-
pressed as

for
otherwise

(9)

Substituting the expression for into (3)
gives the wave velocity signal , i.e., the
impulse response between the source node and the re-
ceiver node , which is expressed in (10) at the
bottom of the page.

In (10), the impulse response is analytically expressed as the
summation of combined polynomials in the time domain. The
computational complexity is high in this equation, so its prac-
tical usefulness is limited. However, for a particular case when
the receiver node is in the diagonal direction of the source node,
i.e., , some simplifications can be observed by succes-
sively incrementing in (10).

When , . From
the calculation result in (10), observe that an update expression
for , , can be written as

and that
for other values of .

According to these observations, (10) can be further simpli-
fied to the following compact form:

for
otherwise

(11)

Note that in (11), every three out of four samples in
are zero-valued.

IV. SIMULATION RESULTS

The impulse responses for three arbitrary source-receiver
positions were simulated using (1) and (10), respectively. The
simulations using (1) were made by constructing a 200 200
node 2-D rectangular mesh and applying an impulse signal
into source node (80,120). The impulse responses were then
simulated at arbitrary receiver nodes (80,120), (83,122), and
(85,125), which correspond to and ,
and , and and , respectively. In the
simulations, sound velocity was set to be 343.5 m/s and spatial
sampling interval was set to be 0.0101 m, indicating an updating

for

otherwise

(10)
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Fig. 3. Impulse response (left figure) and magnitude frequency response (right
figure) for three example source-receiver positions in 2-D rectangular digital
waveguide mesh. Here A.U. represents arbitrary unit. (a) M = 0 and N = 0.
(b) M = 3 and N = 2. (c) M = 5 and N = 5.

frequency of 48 kHz. The impulse response simulations were
run for 48 time steps, which ensured that the sound wave would
not propagate out of the mesh boundary. The three impulse
responses were obtained and also numerically transformed into
the corresponding frequency responses using an FFT length of
64 samples. The simulation results for the three source-receiver
positions were identical to those using (10). The simulation
results for the receiver nodes (80,120) and (85,125) were also
identical to those using (11), as expected.

Fig. 3 shows the three impulse responses and the corre-
sponding magnitude frequency responses. In every magnitude
frequency response, the spectrum is symmetric about one
quarter of the updating frequency. This symmetry characteristic
in the frequency domain corresponds to the phenomenon that
every other sample is zero-valued in the time domain, as shown
in (10) and in the simulated impulse responses in Fig. 3.

V. CONCLUSION

The derivation of the analytical expression for the impulse
response between two nodes in a 2-D rectangular digital wave-
guide mesh was described in this letter. A compact time-do-
main analytical expression for the impulse response was ob-
tained when the receiver was in the diagonal direction of the
source. For other source-receiver layouts, the impulse response
was analytically expressed as the summation of combined poly-
nomials in the time domain. This derived analytical expression
for an impulse response can be used to verify simulation results
obtained from a 2-D rectangular digital waveguide mesh and to
facilitate better understanding of its associated characteristics.

In this letter, the analytical expression of the impulse response
is only derived in the unbounded 2-D rectangular mesh,but the
derivation procedure may be used in more complicated prob-
lems by modifying or adding some parameters. For example, if
the derivation procedure is to be used in unbounded triangular
mesh, the 2-D spatial signal needs to be changed. If the proce-
dure is to be applied in the bounded 2-D rectangular mesh, the
expression of the boundary condition should be considered.
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