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Abstract 
 

In this paper we introduce the use of map-seeking 
circuits for auditory pattern detection and 
classification. A map-seeking circuit is a signal 
processing structure used to detect a desired feature in 
a mixture by iteratively transforming, superposing, and 
comparing the composite mixture with a pattern 
template. The result is a mapping between the template 
and the position of the matched feature in the mixture.  
The iterative detection process is inspired by the 
neural connections in the human visual system. A 
particularly important feature of map-seeking 
classification is that the search operates on an additive 
superposition of allowable transformations of the 
desired feature vector, giving a linear increase in 
computation with increasing image complexity, rather 
than a brute-force feature detection that increases in 
computation geometrically. 
 
 
1. Introduction 
 

Human beings rely on the auditory sense for 
speech, musical entertainment, and event detection. 
The auditory sense is particularly useful for situational 
awareness because the ear-brain system can often 
determine the azimuth, elevation, and identity of a 
sound even when the source is not in view by the eyes.  
In fact, one can easily argue that humans primarily use 
the ears to know where to point the eyes. 

Identification of sound sources, or acoustical 
patterns, has been the subject of extensive research 
over the last 50 years, yet no existing systems achieve 
identification performance anywhere near the level of a 
casual human listener. It is reasonable to consider that 
there might be another viewpoint that can give a 
substantial increase in efficiency and performance. 

Acoustical pattern recognition is a cross-
disciplinary topic.  There are clear contributions from 
the engineering and machine intelligence disciplines, 

but also from neuroscience, psychology, and the 
artistic fields. Conversely, we can use human 
acoustical pattern detection as a concept proof, and 
then consider ways to mimic this performance 
computationally. 

In this paper we present some preliminary work on 
auditory extensions to the map-seeking circuit pattern 
detection theory for images presented by Arathorn [1]. 
This biologically inspired procedure performs a 
comparison between a target pattern and systematic 
transformations of the observed signal.  As described 
later in this paper, the map-seeking circuit formulation 
provides several key capabilities that make it well 
suited for the acoustical pattern detection and 
classification task. 

The remaining sections of this paper are organized 
as follows.  First, we review the concepts, prior work, 
and rationale for acoustical pattern detection.  Next, we 
explain the biologically inspired map-seeking circuit 
structure and principles.  We then present a 
preliminary set of examples, and conclude with the 
prospects for future work. 

 
2. Background 
 

One of the important cues for human situational 
awareness is sound, yet automated sound recognition 
remains a challenging and little understood problem [2, 
3, 4, 5]. 

Acoustical signals are characterized by alternating 
variations in pressure as a function of time, and 
therefore it is common to study acoustical phenomena 
using a spectrogram or similar amplitude vs. frequency 
vs. time representations. 

Many acoustical pattern recognition systems begin 
by deriving a set of descriptive parameters for the 
input signal. The parameters may include the spectral 
envelope, the spectral centroid, voiced/unvoiced state, 
time correlation among partials, inharmonicity, etc.  
The same parameters are derived from the target sound 
(or a family of target training sounds) and then a 
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search is conducted to find a match between the input 
signal parameters and the target database [6, 7, 8, 9].  
We have found this approach to be useful, but difficult 
to evaluate because choosing the set of analysis 
parameters is rather ad hoc: one must consider whether 
the chosen set of parameters is optimal or just 
arbitrary.  Increasing the number of derived parameters 
may help, but leads to the problem of judging the 
importance or weighting of each feature [8, 10, 11, 
12]. In any case, we have come to the conclusion that 
this approach has yielded only incremental 
improvements over the years and does not seem likely 
to make the strides necessary for a truly practical and 
useful recognition system approaching anything near 
the abilities of human observers. What is needed is a 
method with the following attributes: 

• Source-independent representation 
• Allows frequency and duration variations 
• Extensible to an arbitrary number of target 

sounds 
• Rapid elimination of poor matches to 

reduce the computation explosion. 
• Amenable to parallel processing. 
• Low or tractable sensitivity to noise. 

 
2.1 Biologically Inspired Computing 

 
One recent development has been the use of 

biologically inspired pattern recognition [1, 13].  The 
rationale for this is the observation that humans and 
other animals show astonishing skills in detecting and 
acting upon acoustical signals.  However, adopting a 
biological model does not answer the algorithmic 
requirements, since the means and mechanisms of the 
biological system are still only vaguely understood.  
Even in the case of human observers the process 
involved in pattern recognition is not introspectable, 
and therefore difficult to capture in the form of 
computer software. 

The cochlea is the neural transducer element of the 
human hearing system. The cochlea produces a 
spectral decomposition of sound, providing the brain 
with temporal and spectral information. Study of 
computational neurobiology may ultimately address 
the mechanism of human auditory pattern recognition 
beginning with the cochlea and leading to the higher 
nerve centers of the brain, but the current state of 
knowledge has not yet reached this level of 
sophistication. 

 
2.2 Map-Seeking Circuits 

 
The map-seeking circuit theory includes several 

novel features reflecting the architecture of the human 
visual system, including a rapid means for locating 

translated, scaled, and rotated versions of a target 
object within a scene. The possibility that similar 
transformations might be applicable to modeling the 
auditory system is the basis of our investigation. The 
map-seeking scheme is particularly appealing because 
it uses the ordering principle of superposition and a 
nonlinear feedback topology to converge rapidly 
without spending effort on unpromising candidate 
matches. 

Although counterintuitive at first, the notion of 
superposing multiple transformations of the input 
image actually mimics the neural structure of the visual 
system, and unlike the more well-known 
computational detection algorithms using correlation-
like structures, the superposition increases in 
complexity additively, rather than multiplicatively.  
The resulting reduction in computation is substantial, 
and perhaps helps explain the ability of the human 
auditory system to obtain rapid and reliable pattern 
detection without double-precision computation 
elements. 

The map-seeking circuit (MSC) concept is shown in 
Figure 1. 
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Figure 1:  Map-seeking circuit topology 
 
The MSC has two paths, a forward path and a 

backward path. The input is assumed to be a mixture 
of objects, possibly including a target object that is a 
transformed (e.g., rotated, scaled, translated) version of 
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a reference object.  As the input mixture progresses 
through the forward path, it is transformed according 
to chosen parameters such as translation and rotation in 
the case of images, or musical pitch and spectral 
envelope in the case of audio signals. The reverse path 
attempts to find the best match between a set of 
transformations and the target object, or template. The 
process is iterative, so the processed mixture is passed 
sequentially through the forward and reverse paths.  If 
a set of transformations is found that describe the 
mapping of the template to the target in the input 
mixture, the target is "found" and the output contains 
the target object without the other components of the 
mixture.  If the process does not converge to a match 
after some selected number of iterations, the process is 
terminated with a null output. 

To illustrate, consider the visual example shown in 
Figure 1. The MSC is configured with a rectangle 
template, and the allowed transformations in this 
deliberately simple example are limited to horizontal 
and vertical translations only. The input mixture in this 
example contains both a rectangle (the target) and a 
circle. The figure shows nine panels divided into two 
paths, with the forward path shown descending on the 
left and the backward path shown ascending on the 
right. 

The input mixture consisting of the rectangle and 
circle (see Panel 1 of Figure 1) is presented to the 
MSC. Beginning on the upper left, the entire mixture is 
transformed by translating it successively to the left. 
All the translations are then added together as shown 
in Panel 2. The second transform is a vertical 
translation, replicating the Panel 2 image as shown in 
Panel 4. A similarity calculation is made between the 
Panel 5 superposition and the stored template 
rectangle, such as performing a simple dot product. 
The similarity calculation favors the rectangle 
indicated in Panel 7 and propagates up the backward 
path on the right hand side. Panel 7 is then compared 
to Panel 4 to produce another similarity measure that 
weights the best transform. In this case the translation 
that shifted the input mixture "down one row" in the 
vertical direction is preferred over others. This is 
shown in Panel 5. On the backward path the inverse 
transform chosen in layer 2—"shift up one row" in this 
case—is applied, as depicted in Panel 8. The backward 
path intermediate result of Panel 8 is then compared to 
Panel 2 to choose the favored layer 1 transform ("shift 
left one column"), as shown in Panel 3. One final 
inverse transform, "shift right one column," produces 
Panel 9, and the process is continued for a second pass 
through the forward and backward paths. As the 
incorrect transforms in the forward path are iteratively 
attenuated, the match with Panel 6 and the set of 
favored transforms are strengthened. After several 
iterations the favored transformations are uniquely 

identified with the best target. At this point the target 
representation is now mapped via the transformation 
set to the rectangle in the original image.  

As the iterations progress, the Ordering Principle of 
Superposition ensures that if the target exists in the 
input mixture the transforms that best map the template 
to the target will have greater weightings than the other 
allowable transforms. This allows the transforms to be 
added together (superposed), which greatly reduces the 
computational complexity. If the number of transforms 
required at each layer is N and there are M layers in the 
circuit, this would require NM comparisons if done by 
an exhaustive search method. However, by applying 
superposition, this number is only N·M. 

 
3. Method 

 
As an elementary but useful starting point, consider 

a task in which we would like to compare the 
frequency spectrum of a sustained musical instrument 
tone with a predetermined template. The term spectral 
envelope is used to describe the overall energy 
distribution of the signal's magnitude spectrum as a 
function of frequency. For example, a sustained 
musical sound with a periodic waveform has a 
spectrum consisting of harmonic spectral peaks with 
magnitudes that vary with frequency.  The spectral 
envelope of such a signal could be defined rather 
crudely as a curve that smoothly interpolates each of 
the harmonic spectral peaks.  More sophisticated 
methods for defining the spectral envelope involve 
separating the harmonic features attributable to the 
instrument's excitation mechanism (e.g., a vibrating 
reed) from the broader spectral resonances due to the 
instrument's passive body and mechanical couplings 
(e.g., an air column with finger holes). 

To demonstrate the map-seeking procedure for 
audio spectral envelope matching we use a one layer 
MSC with a single template, as shown in Figure 2. The 
task in this case is to detect a particular spectral 
envelope rather than searching among many different 
representations. In a single detection MSC the 
downward link from Panel 3 to the stored 
representation is not needed. The purpose of that link 
is to choose which stored representation best matches 
the target, but in this case we have only one target. 

The flow for a single layer MSC is otherwise 
identical to the general description given in Section 2.2 
above. The target in Figure 2 is represented in Panel 1. 
Panel 2 shows the sum of the transforms that represent 
an amplitude scaling. The function of Panels 3, 4, 5 
and 6 are respectively the same as 3, 6, 7, and 9 shown 
in Figure 1. 
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Figure 2:  Single-layer map-seeking example 
for spectral envelopes 

 
To utilize the MSC algorithm, we represent the 

spectral envelope as a two-dimensional frequency vs. 
time image. By shifting the 2-D image in the vertical 
direction, a match is then made with the spectral 
envelope of the template.  This shift is the transform of 
the MSC layer. 

 
3.1 Sparse Data for Robust Matching 

 
To ensure that the target transforms in the 

neighborhood of the correct template will provide a 
match even if the precise details differ, the algorithm 
can benefit from "blurring" (deliberate fuzziness) in 
the target and template. This is discussed below for 
both the amplitude and frequency dimensions. 

To create a spectral representation suitable for the 
MSC, we use a gammatone filter bank [14]. This has 
several advantages. The constant-Q filter bandwidths 
significantly reduce the amount of data compared to 
the uniform resolution of a raw FFT, thereby 
increasing the computational efficiency. Since the 
individual bandpass filter outputs overlap, the spectral 
energy is smeared across several filter outputs, 
producing the desired fuzziness on the spectral axis. 
Finally, using a gammatone filter bank is a practical 
model for the spectral sensitivity of the human hearing 
system.  

The gammatone filter bank is utilized as follows. 
We rectify and accumulate each filter output to obtain 

the short-time amplitude representation for each center 
frequency in the filter bank, expressed in decibels. The 
final step is to find and plot the spectral peaks with the 
assumption that the spectral envelope is the same for 
small changes in pitch and amplitude. The spectral 
peaks are then plotted with the amplitude and 
frequency as the ordinate and abscissa, respectively. 
The amplitudes are blurred vertically ±0.75 dB with a 
function that decreases as the square of the distance 
from the amplitude position. The primary purpose of 
the blurring function is to emphasize the measured 
amplitude while allowing a match between the target 
and template with a reasonable tolerance. 

 
4. Results 

 
We report two experiments. The first demonstrates 

the MSC algorithm’s ability to identify and map an 
input to a stored template through amplitude scaling, 
and the second demonstrates the rejection of a signal 
for which no allowable mapping exists. 

 
4.1 Experimental Setup 

 
The target samples for both experiments were 

obtained from the musical instrument recordings 
compiled by the University of Iowa Experimental 
Music Studios [15]. Both experiments used the steady 
state portion of a signal for the test input. The target 
signals were not normalized to a common power level, 
so the power levels were found to range from  -1 dB to 
-6 dB referenced to the template power. The template 
was synthesized by finding the spectral envelope of 
four notes played on the oboe: B3, C4, D4 and G4. 
These four notes have similar spectral envelopes 
between 200 Hz and 2,000 Hz. As such, this range was 
used to synthesize the template. The raw steady-state 
spectra were mathematically altered to have the same 
average rms power. The resulting partials were plotted 
to create a representative spectral envelope. Linear 
interpolation was used to estimate the envelope 
between the partials. Each note was played fortissimo, 
that is, loudly, so that any spectral dependence on 
intensity would be minimized for the experiment. 

 
4.2 Identification and Mapping Example 

 
The first task of the MSC was to report a match if 

the target sound was an oboe and find the amplitude of 
the input with respect to the template. Each 
transformation represented 0.1dB with respect to the 
template. The target sounds tested covered three 
octaves, ranging from B-flat 3 to A-flat 6. With the 
exception of D4, the mapping process converged to a 
match when the input oboe sound was between B-flat 
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3 and G4. If the input was higher than G4, the 
amplitude image was found to have an insufficient 
match with the template, giving a null condition in the 
MSC output. The MSC's rejection of the D4 match 
requires further investigation. The MSC has an 
empirically determined threshold to determine if a 
mapping is allowed. It is possible that further 
refinement of this threshold would have yielded a 
positive mapping for D4. The lowest amplitude error 
was with E4, -0.1dB. The mapping error was 
progressively greater the further away the musical 
pitch was from E4. The worst error was -2.4 dB for G4 
and the average amplitude error was 0.77 dB. The 
amplitude discrepancies may or may not be significant 
depending on the nature of the matching task. 

The figures below illustrate the MSC detecting the 
harmonic envelope of one of the notes, D-flat 4, during 
the iterative matching cycle for experiment one. 
Although convergence is typically between 50 and 100 
iterations, in this particular case, the MSC did not 
resolve the mapping after 500 iterations, which is the 
arbitrary convergence limit in our test software. Such a 
result is not without merit however, as it has been our 
experience that if a mapping cannot be found, the 
maximum transform weight will generally decay 
relatively quickly, e.g., within 10 to 20 iterations. In 
this case we can be reasonably certain that a mapping 
exists and it corresponds to the maximum weight of 
1.0. In this case, the best mapping was 2.5 dB. This 
represents an error from the expected 3.0 dB of -0.5 
dB. This is within the +/- 0.75 dB ‘fuzziness’ of the 
algorithm, and is therefore a useful outcome. 

 

 
 

Figure 3:  MSC matching between a test 
envelope and a target template 

 
At the particular step in the iteration depicted in 

Figure 3, the MSC has mapped the template to the 
input with the mapping shown in the lower right panel. 
The panels labeled Forward Path and Backward Path 
are the summations of the transforms. At the end of the 

iteration cycle they are very nearly identical in the 
vertical position as one would expect with a probable 
mapping. 

 
 

Figure 4:  MSC matching at an intermediate 
step in the iterative process 

 
To demonstrate further the iterative nature of the 

MSC, Figure 4 shows an intermediate step as the MSC 
is attempting to find a match. The darker portions in 
panels Forward Path and Output represent the favored 
transformations on the 11th iteration. If we had more 
than one template, the Backward Path panel would 
likewise have a summation. It this case the MSC 
would be in the process of culling the undesirable 
templates. 

 
4.3 Null Case  
 

The second experiment was to demonstrate that the 
MSC could reject a signal that does not have an 
allowable mapping to the template. To demonstrate 
this, a violin playing E-flat 4 was used as the input 
with the oboe template. The MSC correctly returned a 
null condition by forcing all transform weights to zero. 
The null condition is triggered when the matches on 
the backward path of the template and transforms fails 
to be greater than an empirically determined threshold.  
 
5. Future work 

 
There are three main areas for further study: 

robustness, system complexity and optimum 
parameters. Further study needs to be done to 
determine the robustness of MSC in the presence of 
noise and or other potential targets. To be useful the 
system must, of course, be able to work in a real world 
environment and to identify sound targets in a mixture 
of competing signals. 

The examples shown here assume that the target’s 
spectral envelope is roughly constant over a range of 
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musical pitches and intensities, which is not generally 
true. Additional layers and transforms need to be 
identified to account for these natural variations. These 
natural and predictable transformations may require a 
new search domain, such as a corellogram. 

Finally, properly rejecting a sound that is a 
mismatch for the stored template is dependent on a 
threshold of similarity in the backward path of the 
MSC. Determination of this threshold is not yet well 
understood analytically, and is performed empirically. 
There needs to be a more formal determination of the 
optimum level so that the detection is entirely 
automatic. 
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