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ABSTRACT

Using impulse responses measured from various audio systems has become common in audio signal processing.
However, determining the length of an impulse response captured from a nonlinear system becomes problematic,
as these systems violate the linearity principle from signals and systems theory. A “lumpy” or “spiky” tail in
the measured impulse response of a nonlinear system is a tell-tale symptom of this issue. In this in-progress
work, we investigate the use of time-delayed mutual information (TDMI), a concept from the field of information
theory, to identify the useful portion of a recovered nonlinear impulse response. Initial test systems include linear,
time-invariant FIR and IIR filters, and IIR filters with a static nonlinear distortion added.

1 Introduction

The problem of noise contaminating the recovered
impulse response of a system with nonlinearities is
well-known [1, 2, 3] Often, this noise will manifest
as a “lumpy” tail in the impulse response. This phe-
nomenon can complicate the issue of determining the
actual length of the impulse response. When using the
measured response for filtering audio signals, exclud-
ing as much of the noise improves distortion immunity
[3]. In recent work, truncating the measured Volterra
kernels of tube amplifiers improved model performance
and reduced computational complexity [4].

This in-progress work investigates estimating the mem-
ory length of nonlinear systems using time-delayed
mutual information (TDMI), a technique originating
from the information theory field [5]. TDMI is not a

modeling technique, rather, it is a method to quantify
the nonlinear correlation between two signals across
various time-shifts [6]. In this case, the two signals
are the input and output of a nonlinear system, and
the TDMI should indicate the memory extent or im-
pulse response length of the system. Thus, we hope
to demonstrate that TDMI can help distinguish a non-
linear system’s recovered impulse response from noise
due to nonlinearities.

To evaluate how well this technique estimates a sys-
tem’s memory length, we first apply it to linear, time-
invariant FIR and IIR filters to develop confidence in
applying the same method to nonlinear systems. We
evaluate the TDMI performance by comparing the re-
sults to the expected impulse response length. By es-
tablishing a strong foundation on known systems, we
can then address known nonlinear systems with con-
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fidence, and eventually, unknown systems that may
exhibit nonlinear behavior.

2 Background: Time-Delayed Mutual
Information

Mutual information measures the reduction in uncer-
tainty about the probability of a random process X
given information from another process Y [5]. In an
audio signal processing context, the processes X and
Y can be the sampled input and output signals x[n] and
y[n] of an audio system. Mutual information principally
requires estimating the marginal and joint probabilities
of X and Y ; that is, P(X), P(Y ), and P(X ,Y ). In this
work, we use the histogram as our estimator, as it per-
forms satisfactorily for the length of signals we will be
using [6]. Next, the Shannon entropy of each of these
probabilities is computed, using

HX =−∑
i

p(x) log2 p(x) bits/symbol (1)

HY =−∑
i

p(y) log2 p(y) bits/symbol (2)

HX ,Y =−∑
i

p(x,y) log2 p(x,y) bits/symbol (3)

With the entropies of each probability distribution com-
puted, the mutual information (MI) is given by the sum
of the marginal entropies minus the joint entropy [5]:

MI = HX +HY −HX ,Y (4)

If the input and output signals are statistically indepen-
dent – that is, p(x,y) = p(x)p(y) – the mutual informa-
tion between the two will be 0. Conversely, significant
mutual information values are indicated where they are
greater than the estimator bias or “noise floor” of the
probability estimator; determining this estimator bias
will be covered shortly. Now, introducing a time-shift τ

in one of the random processes gives the time-delayed
mutual information (TDMI):

MI(τ) = HX(τ)+HY −HX(τ),Y (5)

By evaluating the TDMI in Equation 5 over a series of
time-shifts τ , we estimate the impulse response length

by counting how many samples it takes until the TDMI
values fall into the estimator bias or "noise floor". To
find the estimator bias, we first apply a random shuffle
algorithm to the input signal x[n], reordering the se-
quence elements randomly. Then, for each time shift
τ applied to the shuffled x[n], we measure the mutual
information between x[n− τ] and the unaltered output
signal y[n] [6]. Theoretically, there should be no mutual
information between these signals; TDMI values less
than or equal to this estimator bias shall be deemed
insignificant.

3 Experiment

3.1 Test Script Setup

The following parameters are common to all of the
TDMI experiments that follow. Based on the cross-
correlation method used in [4] and [7], we use the MAT-
LAB function randn to generate the test system’s
input signal x[n], creating a pseudo-random Gaussian
white noise sequence of sample length N2 = 106, where
the histogram bin count N = 103. x[n] is then passed
through the test system and the output signal is recorded
as y[n]. Using N bins, the marginal probabilities P(X)
and P(Y ) and the joint probability P(X ,Y ) are com-
puted with the histogram and histogram2 MAT-
LAB functions, respectively. Finally, the user must
specify an array of sample-shifts τ over which to com-
pute the TDMI.

Once the signals x[n], y[n], the bin count N, and the
array of sample-shifts τ are decided, they are passed
into a custom MATLAB function, tdmi. This function
iterates over all sample-shifts τ provided, finding each
probability distribution and its associated Shannon en-
tropy, as given in Equations 1-3. Then, the function
computes the TDMI for each sample shift τ as shown
in Equation 5. For each value τ , the function also de-
termines the estimator bias as described in the previous
section. The function then returns the sample-shifts,
TDMI values, and estimator bias as separate arrays for
analysis and plotting.

In the sections that follow, we start with relatively sim-
ple test systems for evaluating the TDMI method, in-
cluding a delay line and FIR moving average filter.
Then, we look at IIR lowpass filters, briefly discuss
all-pass filters with various levels of attenuation, and
finally, we examine the same IIR filters but with a non-
linear distortion added to the filter output.
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Fig. 1: Impulse response of delay system described in
Eq. 6

Fig. 2: TDMI evaluated over τ = [0,40] for delay sys-
tem described in Eq. 6

3.2 First experiment: Simple delay system

As a straightforward first demonstration, our initial test
system is simply a delay of three samples:

h[n] = δ [n−3] (6)

The impulse response for Equation 6 be seen in Figure
1. After passing the input signal x[n] through the system
and recording the output y[n], we then compute the
TDMI and estimator bias over sample-shifts ranging
from zero samples to 40 samples; see Figure 2.

Here we once again emphasize that the computed
TDMI values do not serve as a model of the test sys-
tem, but as an estimate of the impulse response length.
The singular spike in TDMI corresponds to where the
most mutual information between x[n] and y[n] occurs.
Because y[n] is simply a copy of x[n] delayed by three
samples, the maximum TDMI between y[n] and x[n]
occurs at τ = 3, where x[n] is delayed by three samples.
In contrast, the TDMI values at any other time-shift τ

are indistinguishable from the estimator bias or TDMI
“noise floor”.

3.3 Second experiment: FIR Moving Average
filter

To further evaluate TDMI as a method for estimating
impulse response length, we cascade the three-sample
delay with a moving-average FIR filter containing 10
coefficients of 1

10 each, resulting in the following im-
pulse response:

h(n) =

{
1

10 , 3 ≤ n ≤ 12
0, otherwise

(7)

The impulse response for this system is shown in Figure
3; evaluating the TDMI across sample-shifts from τ = 0
to τ = 40 is shown in Figure 4. In this example, the
TDMI is clearly above the estimator bias for the active
part of the filter, where 3 ≤ τ ≤ 12 sample-shifts. Thus,
while we do not create a model of the test system using
TDMI, we can confidently estimate the length of its
impulse response.

3.4 Third experiment: IIR filters

With the basic examples of a delay line and a basic
FIR filter validated, the next degree of complexity is
to consider systems characterized by an infinite im-
pulse response (IIR). Due to the analog nature of audio
systems like amplifiers and filters, we must expect to
encounter such IIR systems in the “real world”. Hence,
in this experiment, we investigate the performance of
the TDMI approach on RC low-pass filters digitized
using the impulse invariance method. Because RC low-
pass filters are well understood and easy to design, we
chose to focus on their digitized versions as our first IIR
test systems. Despite the fact that the impulse response
length of these filters is truly infinite, a common heuris-
tic states that the impulse response decays after five
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Fig. 3: Impulse response of delayed, FIR moving-
average system described in Eq. 7

Fig. 4: TDMI evaluated over τ = [0,40] for delayed,
FIR moving-average system described in Eq. 7

time constants. Therefore, this rule of thumb will be
useful when interpreting the calculated TDMI values.

To conduct the following IIR experiments, using the im-
pulse invariance method, we designed RC lowpass fil-
ter prototypes with various cutoff frequencies of fc =1,
2, 5, 10, and 20 kHz, using a sampling frequency of
fs = 96 kHz. The Laplace-domain transfer function for
the RC filters is given by

H(s) =
2π fc

s+2π fc
, (8)

where 2π fc = 1
RC . We obtain the discrete-time RC

filters using the impulse invariance relation from [8],

Fig. 5: Impulse response for digitized RC Lowpass Fil-
ter with fc = 10kHz

H(z) =
2π fct0

1− e−2π fct0z−1 , (9)

where t0 = 1/Fs, for Fs = 96kHz. To evaluate the TDMI
method for our lowpass filter prototypes, we apply the
same method as before: pass pseudo-random Gaussian
white noise through the system defined by h[n], select
sample-shifts τ over which to evaluate the TDMI, and
pass x[n], y[n], and the lags into our MATLAB function
tdmi.

3.4.1 10kHz low-pass IIR filter

Starting with fc = 10kHz, the impulse response of the
designed low-pass filter is shown in Figure 5. The ab-
scissa is shown in samples based on Fs. Although five
time constants in continuous-time does not correspond
to an integer number of samples, it is nonetheless plot-
ted as a vertical line for reference. Figure 6 shows the
TDMI calculation and estimator bias for the filter with
fc = 10kHz.

Also in the TDMI calculation shown in Fig. 6, we
plot five time constants as a vertical dotted line for
reference. In addition, we indicate where the TDMI
is less than or equal to the estimator bias with a star.
As seen in Fig. 6, the significant portion of the TDMI
occurs between 0 ≤ n ≤ 6. With this particular filter,
five time constants multiplied by Fs corresponds to
7.6394 samples. Hence, we have some confidence that
the TDMI could estimate the length of the impulse
response for h[n] in this instance.
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Fig. 6: TDMI evaluated for RC Lowpass Filter with
fc = 10kHz

Fig. 7: Impulse response for digitized RC Lowpass Fil-
ter with fc = 20kHz

3.4.2 20kHz low-pass IIR filter

Next, we look at the case where fc = 20kHz. Its im-
pulse response and TDMI plot are shown in Figures
7 and 8, respectively. The results are similar to the
fc = 10kHz case: the TDMI is above the estimator
bias between 0 ≤ τ ≤ 3 sample-shifts, slightly short of
the five time constants mark of 3.8197 samples when
scaled by Fs = 96kHz. Thus, while the TDMI method
did not perfectly predict the impulse response length, it
seemed to perform relatively well.

Fig. 8: TDMI evaluated for RC Lowpass Filter with
fc = 20kHz

Fig. 9: Impulse response for digitized RC Lowpass Fil-
ter with fc = 1kHz

3.4.3 1, 2, and 5kHz low-pass IIR filters

We noticed an interesting phenomenon when dealing
with low-pass filters with narrower passbands. In this
subsection, we examine the TDMI method as applied
to filters with cutoff frequencies of 1, 2, and 5 kHz,
respectively. The impulse response plots and TDMI
calculations for these three filters are shown in Figures
9 through 14.

We can see that as the passband shrinks by reducing
fc, the TDMI approach gets worse at predicting the im-
pulse response length. In the 1kHz example, the TDMI
falls below the estimator bias for τ ≥ 35 samples, yet
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Fig. 10: TDMI evaluated for RC Lowpass Filter with
fc = 1kHz

Fig. 11: Impulse response for digitized RC Lowpass
Filter with fc = 2kHz

the scaled five time constants occurs at 76.3944 sam-
ples. In the 2kHz example, the TDMI method indicates
significant values between 0 ≤ τ ≤ 34, while the scaled
five time constants should be 38.1972 samples. Thus,
the TDMI already seems to improve compared to the
1kHz case. Finally, for fc = 5kHz, TDMI is signifi-
cant for 0 ≤ τ ≤ 14, and five time constants occurs at
15.2789 samples.

At the time of this preprint, we are still investigating
the cause of this phenomenon. Initially, it appears that
the power of the filtered output signal y[n] shrinks as
we reduce the filter cutoff frequency, fc. Intuitively,
this is no surprise as the filter blocks certain frequen-
cies of the broadband noise in the test signal x[n]. To

Fig. 12: TDMI evaluated for RC Lowpass Filter with
fc = 2kHz

Fig. 13: Impulse response for digitized RC Lowpass
Filter with fc = 5kHz

check whether the decreased power of the output sig-
nal was causing this phenomenon, in the next section
we present tests using all-pass filters with gradually
decreasing gains.

3.5 All-pass filters with decreasing gains

As mentioned in the previous subsection, the TDMI
method when applied to lowpass filters becomes unre-
liable as the pass band becomes narrower. As part of
the initial investigation into this observation, here we
present the TDMI method applied to Schroeder all-pass
filters with various levels of attenuation. In doing so,
we hope to verify whether the reduction in the level of
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Fig. 14: TDMI evaluated for RC Lowpass Filter with
fc = 5kHz

output signal y[n] is attributable to the unreliable TDMI
values.

From [9] we use the following discrete-time transfer
function to create Schroeder all-pass filter sections:

H(z) =
b0 + z−M

1+aMz−M , (10)

where we arbitrarily set the delay line length to M = 4
samples and set the feedback and feedforward coeffi-
cients b0 = aM = 0.01. We scale H(z) in Eq. 10 by the
constants 1, 2−10, and 2−20 to apply varying amounts
of attenuation to the system. These scalars correspond
to 0, -60, and -120 dB of gain, respectively. The result-
ing impulse response and TDMI results for an all-pass
filter with unity gain are given in Figures 15 and 16, re-
spectively. The TDMI calculation for an all-pass filter
with -120 dB gain is shown for comparison in Figure 17.
We did not show figures for the -60 dB case because,
regardless of the attenuation we applied to the all-pass
filter, the TDMI calculation always indicated that the
significant portion of the impulse response occured at
τ = 4 samples, which corresponds to the impulse re-
sponse peak as shown in Figure 15. Thus, we cannot
say that merely reducing the amplitude of y[n] will pro-
duce unreliable TDMI estimations, and we will need
to address the issue in the previous section as future
work.

Fig. 15: Impulse response for all-pass filter with 0dB
of attenuation

Fig. 16: TDMI evaluated for all-pass filter with 0dB of
attenuation

3.6 IIR Lowpass filters with static nonlinearity

Finally, we look at the TDMI method when applying a
static nonlinearity to the output of the lowpass filters
designed in Section 3.4. As in our prior work [7], we
use the arctangent function to serve as a "soft-clipping"
static nonlinearity. This function is shown in Figure
18. TDMI plots for the 1, 2, 5, 10, and 20 kHz lowpass
filters with added nonlinear distortion are shown in
Figures 19 through 23.

Comparing the distorted filters with their linear coun-
terparts, the TDMI calculations included more of the
impulse response length for the 1kHz case, and under-
estimated the impulse response length for the 2kHz,
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Fig. 17: TDMI evaluated for all-pass filter with 120dB
of attenuation

Fig. 18: Arctangent function evaluated over −10≤ x≤
10

5kHz, and 10kHz cases. The nonlinear 20kHz case
appeared to perform similarly to the linear case, as it
overestimated the impulse response length by about
1 sample. However, the linear 20kHz case underesti-
mated the length by 1 sample. We did not observe the
same trend in the linear experiments, where TDMI was
less reliable as fc decreased.

4 Discussion

For fairly simple scenarios such as a delay line (Eq.
6), FIR moving-average filter (Eq. 7), and various
Schroeder all-pass filters (Eq. 10), the TDMI method
accurately reported the significant portion of the sys-
tem’s impulse response. Once we shifted our focus to

Fig. 19: TDMI evaluated for Distorted RC Lowpass
Filter with fc = 1kHz

Fig. 20: TDMI evaluated for Distorted RC Lowpass
Filter with fc = 2kHz

IIR lowpass filters (Eq. 9), we noticed that the perfor-
mance of the TDMI method worked for fairly generous
passbands, but started to degrade as fc was decreased.
When adding the arctangent as a nonlinear distortion to
these linear filters, the TDMI did worse for larger fc but
actually did better for fc = 1kHz. There did not seem
to be much difference between the linear and nonlinear
20kHz lowpass filter experiment. In the former, the im-
pulse response length was underestimated by 1 sample,
while in the latter, the length was overestimated by the
same amount.

Future work includes investigating the degradation of
the TDMI method as fc decreases in the linear case.
We initially thought that the TDMI method might suf-
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Fig. 21: TDMI evaluated for Distorted RC Lowpass
Filter with fc = 5kHz

Fig. 22: TDMI evaluated for Distorted RC Lowpass
Filter with fc = 10kHz

fer if the amplitude of the output becomes extremely
small, but the method worked perfectly on an all-pass
filter with -120dB gain. Importantly, the TDMI cal-
culations are dependent on the estimated probability
distributions for the input and output signals. Thus,
the next logical step is to investigate these distributions
more closely as fc varies. When adding the nonlinear
distortion, the TDMI approach generally seemed to un-
derestimate the impulse response length compared to
the undistorted experiments. Again, investigating the
calculated probability distributions in these cases will
be worthwhile.

Fig. 23: TDMI evaluated for Distorted RC Lowpass
Filter with fc = 20kHz

5 Summary

Measuring the impulse response of systems exhibiting
nonlinear behavior by using linear systems theory is
challenging. In this work, we present time-delayed
mutual information (TDMI) as a potential technique for
estimating the impulse response length of basic linear
and nonlinear systems. From the field of information
theoretics, mutual information is a nonlinear correlation
metric of how much information from an output signal
y[n] may be caused by an input signal x[n]. By applying
a time-delay to the input signal x[n], e.g., x[n− τ], the
time-delayed mutual information (TDMI) calculation
measures the shared information between the delayed
x[n] and y[n]. Thus, by repeating this process over
various τ , we attempt to measure the impulse response
length of the underlying system h[n]. For sample-shifts
τ where the TDMI falls below the estimator bias, we
may assume that the system’s impulse response h[n]
has fallen below the noise floor.

We validated the TDMI method by starting with simple
systems such as a delay line, FIR moving-average filter,
and Schroeder all-pass filters. We then investigated IIR
lowpass filters to simulate encountering analog audio
systems in the field. The TDMI method worked reason-
ably well for higher cutoff frequencies such as fc = 10
and 20 kHz, but performance started to degrade as fc
was decreased down to 1kHz. Determining the cause
of this phenomenon is still a work in progress. We then
tried the TDMI approach after applying a static non-
linearity to the IIR lowpass filters. In most instances,
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the TDMI approach tended to underreport the impulse
response length compared to the linear cases.

Future work includes investigating the effect of both
nonlinear distortion and decreasing fc on the TDMI
performance. Initially we thought that the TDMI suf-
fered due to the decreased energy in y[n] as fc was
lowered. However, the reason may not be so simple, as
the TDMI method worked exceptionally for an all-pass
filter with -120dB gain. We suspect that taking a closer
look at the estimated probabilities of x[n] and y[n] may
point to an explanation, as the TDMI calculation is
inherently based on these probability calculations.
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