Acoustical Characterization of Gunshots

Robert C. Maher Electrical and Computer Engineering Montana State University - Bozeman

Outline

- Applications
- Gunshot acoustical properties
 - Mechanical action
 - Muzzle blast
 - Shock wave (supersonic projectiles)
- Range effects
 - Propagation and Attenuation
 - Reflections
 - Limitations
- Conclusions

Gunshot Analysis Applications

Real Time Tactical Information

 Gunshot Detection
 Sniper Localization

- Forensic Reconstruction
 - Timeline Assessment
 - Shooter Location and Orientation
 - Firearm Classification

Sound Characteristics

0.1 inch divisions 308 Winchester, NATO FNM 83-23

- Acoustic behavior depends upon:
 - Firearm type
 - Projectile parameters
 - Explosive load
 - Distance
 - Meteorology
 - Obstacles

Acoustical Gunshot Evidence

- Mechanical Action
- Muzzle Blast
- Supersonic Projectile (shock wave)
- Surface Vibration
- Reflections, Refraction, Reverberation
- Microphone Type and Location
- Audio Coding Issues (e.g., cell phone)

'N' Shaped Shock Wave

College of

ENGINEERING

Multipath: Ground Reflection

Shock Wave Timing Example

Bullet speed at muzzle: 2728 ft/sec (831.5 m/sec)

Speed of sound (*c*): 1075 ft/sec (328 m/sec)

Mach Number (*V*/*c*): 2.54

Mach Angle (θ_M): 23.2°

Gunshot Recording: Path 1

Gunshot Recording: Path 2

Gunshot Recording: Path 3

Gunshot Recording: Subsonic

Propagation Effects

- Attenuation due to acoustical spreading
- Obstacles: reflection and diffraction
- Path elevation trajectory
- Projectile deceleration
- Temperature gradient
- Wind gradient

Projectile Deceleration

Downrange Distance [feet]

Effect of Wind

Effect of Temperature

• The speed of sound (*c*) in air increases with increasing temperature:

$$c = c_0 \sqrt{1 + \frac{T}{273}}$$

(*T* in $^{\circ}$ C and $c_0 = 331$ m/s)

- Hotter air near ground: curves upward
- Cooler air near ground: curves downward

Conclusion

- Closely-miked gunshot recordings:
 Geometric acoustics works well
- Distant recordings:
 - Propagation effects lead to greater uncertainty due to altered sound path
 Reflections and reverberation dominate
- Verification is needed to assess the validity of acoustic analysis claims

