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The results of several investigations into the behavior of uniformly quantized signals
are collected and discussed. In particular, the characteristics of digitized low-level
signals are considered that lead to the effect known in the audio vernacular as granulation
noise, an undesirable correlation between the input signal and the quantization noise
components. Although the paper is primarily expository in nature, practical effects
and some new simulation results are also presented.

0 INTRODUCTION quantization process in digital audio systems is pre-
sented first. The intent is to emphasize the properties

The input analog signal in a conventional pulse code of amplitude quantization of simple signals which lead
modulation (PCM) digital audio system must be quan- to a better interpretation than the widely espoused "6-
tized in amplitude. The resulting digitized signal is a dB per bit" formulation. The deterministic nature of
distorted replica of the original analog input signal quantization distortion is emphasized. Finally, some
[1]-[3]. The amplitude quantization process, a non- new simulation results are presented, indicating the
linear time-invariant operation, places an up-front limit origin and behavior of so-called granulation noise.
on the distortion performance of the entire digital audio

system. With an appropriate sample rate, an adequate I AMPLITUDE QUANTIZATION
number of bits in the digital signal representation, and
a suitably complex input signal, little if any perceptual Conventional digital audio systems involve both time
degradation is present in the reproduced signal. How- sampling and amplitude quantization. For properly
ever, since the precise meaning of the terms appro- bandlimited signals (and neglecting clock jitter) time
priate, adequate, and suitably complex is exquisitely sampling is a theoretically lossless process--the orig-
vague, there remains a need to consider the deleterious inal signal can be reconstructed exactly from its samples.
effects of amplitude quantization. Amplitude quantization, however, is inherently lossy

Several noteworthy papers have appeared recently --some range of actual input signal values is associated
which consider the general behavior of amplitude with a single output value (a many-to-one mapping).
quantizers [4]- [6]. In this paper low-level audio signals A common representation of a bipolar uniform quantizer
are considered specifically in order to address the Q is shown in Fig. 1. This quantizer is chosen to be
question of why the quantization distortion has a gritty, normalized, that is, the spacing of the output steps
granular sound quality. Although the development of equals the spacing of the input units. Note that the zero
analog-to-digital converters with noise shaping [5], [6] point of the quantizer depicted in the figure occurs
and dither [7], [8] is de rigueur in many audio systems, halfway between quantization levels, corresponding to
the small-signal properties of the standard linear quan- a "round to nearest integer" mathematical operation.
tizer are still interesting and worthy of consideration A quantizer could also be defined with an output level
due to their widespread use. transition at the zero point, corresponding to either a

A review of several existing descriptions of the round-up or a round-down operation.
Without loss of generality, the normalized rounding

* Manuscript received 1991August 9. quantizer of Fig. 1 is used in the remainder of this
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paper. It is also assumed in this paper that the input
signal amplitude does not exceed the range of the 1.1.1 Single Sinusoidal Input

quantizer. This assumption is appropriate for the low- Consider an input signal consisting of a single sinu-
level signals of interest here. The mathematical de- soid with amplitude V and angular frequency to. Using
scription of the quantization process in continuous time Eq. (3) the quantized signal can be written as
is presented first, followed by the practical discrete-
timecase. sin[2nx V sin(tot)]

_:(t) = V sin(tot) + _ (-1) _
1.1 Ouantization Effects in Continuous Time ,=_ n,r

Thedifferencebetweenthe actualcontinuousinput (4)

signal value and the quantized output value is the Thus _:(t)contains the true input signal V sin(tot)and
quantization error eQ(x). The well-known sawtooth other spectral components due to the summation term
representation of the quantization error as a function in the equation. Eq. (4) can be rewritten in terms of
of the input signal is shown in Fig. 2. Note that the Bessel functions as [9]
error is a deterministic function of the input signal,
that is, the error is aknownquantityif the signalitself _
is known. A convenient mathematical form for the Sc(t) = V sin(tot) + 2 _ (-1)' _. J2k+l (2n'rrV)
quantization process O{-} is n=l n_ k=0

X sin[(2k + 1)tot] (5)
,_(t) = Q{x(t)} = x(t) + eQ(x(t)) (1)

or

where .r(t) is the quantized value and eQ(x(t)): saw-
tooth(x(t)) [4], [5], [91. By expanding the sawtooth
function of Fig. 2 as an infinite Fourier series, namely, _(t) = Vsin(tot) + 2 _ (-1)'

n= 1 n'TT

_c
;c

sawtooth(x) = _ (-1) _ sin(2nxx) (2) × _ Jr(2n*rV) sin(ptot) (6)
n=l /'/'Ti'

p=l
(odd)

the quantized signal becomes

where Jp(.) is the Bessel function of the first kind ofvc

order p. The error term contains only odd harmonics,
,_(t) = x(t) + _'_ (-1) n sin[2n'rr · x(t)] (3) which is expected because the quantizer of Fig. 1 isn=l htr

an odd function.

The sign alternation factor (- 1)n arises from the def- The amplitude of the harmonics produced by the

inition of the sawtooth as continuous across the origin, quantizer can be expressed individually using Eq. (6):
The basic formulation of Eq. (3) is used in the following oc

sections to express the spectral content of the quantized to: Al = V + 2 _ (- 1)_ Jl(2n_V)
input signal. ,,=l n'rr

ERROR, eQ(x)

OUTPUT
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Fig. 2. Representation of quantization error eQ(x) for uniform
Fig. 1. Bipolar uniform quantizer Q{.}, which is normalized quantizer of Fig. 1. Error is difference between input signal
so that input and output units are the same. Output steps and quantized output signal and behaves as deterministic
correspond to "round to nearest integer" operation, sawtooth function of input signal.
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2to: A2 = 0 numbers.
It must be emphasized that the quantization distortion

componentsare present in the quantizedoutput signal
3to: A3 = 2 _'_ (- 1)_ J3(2nlTV) for any amplitude of the input sinusoid. However, the

n=l //'ti'
distortion is usually of perceptual importance only for
low input amplitudes where the ratio of signal (fun-

4(0' A 4 = 0 damental) to total distortion is small. This characteristic
is considered in more detail in the following sections.

and so on. Note that the amplitude of the pth harmonic

is determined using a summation of values spaced by 1.1.2 Multisinusoidal Input

multiples of 2'rrV on the Bessel function of order p. Amplitude quantization is a nonlinear operation. This
With large arguments, such as 2nx V > p, Bessel rune- fact prevents us from using superposition to "add up"
tions of similar order have similar amplitude ranges
and decrease in extent approximately as - 1/X/_xx(see the results obtained for several single sinusoids to rep-

resent more complex signals. However, by replacing
Fig. 3). Thus detectable harmonic energy can be present x(t) in Eq. (3) by an arbitrary waveform in sum-of-
over a wide frequency range due to the quantizer. Fur- sinusoids form,
thermore, the quantization "noise" is actually odd har-
monic distortion for any amplitude of an input sinusoid. M

The common assumption that the quantization noise is x(t) = _ Vmsin(tomt) (7)
additive, white, and uncorrelated with the input signal m=l
is simply incorrect for the case of sinusoidal input.

The formulas involving Bessel functions are compact the resulting quantized signal becomes
and mathematically elegant. However, they are often
computationally intractable due to the slow convergence M
of the summation. Instead, the infinite summation over ._(t) = _'_ Vmsin(tomt)

m=l

the Bessel function terms can be represented in an

equivalentfinite sum formulationto ease the compu- :_ [ M ]
tational burden for simulations [5]. This procedure is + _'_ (-1)' sin 2n_ _ Vmsin(tomt) .[ Joutlined in the Appendix. ,=i nrr m=i

Examplespectracalculatedforfourdifferentarbitrary (8)
sinusoidai input amplitudes are shown in Fig. 4. Nor-
malized decibel ratios 20 log(IApl/v) are shown in This signal contains spectral components at the input
Fig. 5. Observe that the spectral levels are intimately signal frequencies (the tOm)and at harmonics of the
dependent on the amplitude of the input sinusoid. For input frequencies, and intermodulation products at sums
example, the partial levels for input amplitudes of 100 and differences of multiples of the input frequencies.
and 101 are nearly the same while the levels for input The resulting spectrum is still deterministic but some-

amplitude 100.5 are around 10 dB greater for low partial what more complicated to calculate. Following the
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0.40 ,2kx lu(x) 1
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Fig. 3. Overlapped plot of Bessel functions dl(x), Jll(X), J21(x), and J31(x). Also shown is function 1/X/x. Note that for
large values of x, amplitudes of Bessel functions of any order are similar and decrease approximately as l/%/x.
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concise derivation of Abuelma'atti [9], an output Thus we are able to calculate the spectral components

product of frequency tOegiven by present in the quantized output signal for any input
represented by a Fourier sine series. This result can,

t_ of course, be extended to an arbitrary periodic signal.
tOp ----- E OtmtOm, tOp> 0 (9) The presence of the harmonic and intermodulation termsm=l

results in a plethora of components spread over a wide

where otm is a positive or negative integer (or zero), bandwidth. For an input signal containing many spectral
components the numerous distortion products produced

has the amplitude given by by the quantizer become essentially continuous across
M the audible band and take on the perceptual qualityof

V_],_2, ' · ' , _A4= 2_ (- 1)" FI Jletil (2n_'Vi) · low-level white noise. In this situation the well-known
n=l n_x i=] formula relating signal to quantization noise (total) is

(10) applicable: SNR (dB) -- 6.02b + P, where b is the
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Fig. 4. Comparison of calculated harmonic distortion amplitudes for four different arbitrary input amplitudes of single
sinusoid. Amplitude of each partial Ap depends on partial number and input amplitude.
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Fig. 5. Data of Fig. 4 now shown as decibel levels relative to input amplitude V. Relative level of partial is 20 log(]ApJ/V).
Again note strong dependence of partial levels on input amplitude.
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number of binary bits in a quantized output sample and is commonly most objectionable--the unmasked decay
P depends on the statistics of the input signal (peak- of a musical note played by a solo instrument. As the

to-rms ratio). Under these conditions it is reasonable sound of, say, a piano note or plucked string decays,
and more appropriate to describe the quantization error it also typically becomes more sinusoidal as higher
as uncorrelated with itself and the input signal [7], [8], partials are damped out. The signal presented to the

[10]; quantizer starts out as a high-level signal with complex
spectrum which gradually becomes a low-level sinusoid.

1.2 Ouantization Effects in Discrete Time: As noted, the spectral level of the quantization distortion
Aliasing components varies with the amplitude of the input sig-

The effects of quantization in continuous time de- nal, with a trend toward decreasing the signal-to-noise
scribed in the previous section are of imporant theo- ratio as the input signal amplitude decreases. Thus the
retical interest. The practical situation, however, re- quantized signal first contains a broad-band quantization
quires consideration of discrete-time system properties, noise, which becomes discrete distortion components
particularly aliasing [11]. The frequencies present in as the input signal decays. Moreover, the decaying
the quantized signal [see Eq. (6) or Eq. (8)] may contain amplitude of the input signal translates to rapid am-
energy above the half-sampling frequency (sample rate plitude modulation of the distortion harmonics. This
divided by 2) which folds over into the passband because is the effect known as granulation noise.
the quantization process occurs after the input anti- Consider a simple example of a decaying sinusoidal
aliasing filter. Depending on the relationships among signal,
the input signal component frequencies and the sample
rate, the aliased components of a quantized sinusoid x(t) = A e -t/* sin(cot) (11)
may collide with the harmonic distortion components
or appear at inharmonic frequencies. Furthermore, where for convenience the time constant 'r is assumed
higher order foldover may also be present due to dis- to be much greater than the waveform period 2Tr/co.
tortion components with frequencies exceeding the Placing this signal in Eq. (6) gives
sample rate itself, as depicted in Fig. 6. The effects of
aliasing can be reduced by ovcrsampling, thereby 5:(t) = A e -''?' sin(cot)
shifting the foldover frequency up to a range where

the quantization components have fallen off to very _ (-1) n _: e_t/,)low amplitudes. + 2 _ _ Jp(2n'rrA sin{pcot} . (12)n=l HTr p=l
As ...:,t. ,t._w,,, ,,c continuous-time case, the spectrum pro- (odd)

duced by quantizing a complicated input signal in dis-
crete time is broad band and essentially white. The The author is not aware of a closed-form expression
additional components aliased into the passband can for Eq. (12), but numerical calculations are reasonably
contribute to the whitening effect. The presence of convenient using a finite-sum formulation (again, see
quantization distortion components may also be masked Appendix). The time-variant spectrum of the quantized
to a great extent by components present in the signal signal (neglecting aliasing) is shown in Fig. 7. Nor-
itself, malizeddecibelratios relating the harmonicenergyto

the fundamental are given in Fig. 8. Note in particular

2 GRANULATION NOISE that the strengths of the individual distortion components
are strongly dependent on the amplitude of the decaying

The results of the preceding section do not explicitly input sinusoid. Note also that the total power of the
consider the situation in which quantization distortion combined distortion components is less dependent on

the exact amplitude of the input signal, but also follows
the general trend toward decreasing the signal-to-noise
ratio as the signal decays.

The signal-dependent fluctuation of the distortion
g components,perhapscombinedwithaliasing, results

Fold .... in the gritty, broad-band background noise that mod-
z Frequency ulates and increases as the signal level decreases. It isS_._R

_ a 2 this signal-dependentnoise fluctuationthat causesthe
granular perceptual sound quality.ma;,_, Il_ I. l I m., II,/_,.

3f 5f 7f gl

Frequency [Li.... ] 3 CONCLUSION

Fig. 6. Example showing aliasing of quantization distortion Based on the derivations and examples collected for
components. Partials with frequency above half the sample this paper, the following conclusions may be drawn.
rate (SR) are aliased into passband. Roman numerals indicate 1) Quantization noise is deterministic. If the input
order of foldover. If input frequency were an integer divisor
of sample rate, aliased components would collide with each signal and quantizer characteristic are known, the error
other, introducedby thequantizeris alsoknown.
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2) Quantization of a simple sinusoidal signal produces the quantization error from sample to sample. However,
new discrete harmonic components for any input am- decaying musical signals often become increasingly
plitude. Harmonics above the half-sampling frequency sinusoidal as their amplitude decreases, resulting in

are aliased, resulting in possibly inharmonic components signal-correlated noise components at discrete fre-
in the passband, The presence of these discrete distortion quencies.

components is of perceptual importance primarily for 5) Although the total distortion energy of a quantized
low-level input signals, sinusoidal signal is somewhat independent of the input

3) The output spectrum for a known input signal and signal amplitude, the level of any individual harmonic
quantizer can be calculated numerically, varies significantly with changes in the input signal.

4) As is widely known, quantization of complicated These fluctuations can be perceived as a gritty, metallic
input signals produces an essentially white background timbre as the amplitude of the input signal decays.
noise contribution due to the uncorrelated nature of This is the cause of granulation noise.

4O
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Fig. 7. Overlapped plot of calculated individual partial levels for exponentially decaying sinusoid (100e -t/0'434, decay from
100 to I in 2 s). Large fluctuations in both fundamental and partial levels give rise to gritty, or granular, perceptual quality
to distortion. A--input signal amplitude; B--output amplitude of fundamental; C, D, E--output amplitudes of third, fifth,
and seventh partials.
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Fig. 8. Data of Fig. 7 now shown as decibel levels with respect to fundamental At. Fundamental-to-partial ratio = 20
log(IAiIl[ApI);fundamental-to-total-noise ratio = 10 log(]A,[_/Zp [Ap[2).
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where K is the smallest integer greater than V. This lets the right-hand side of Eq. (17) be written as

[K-k_=i{lsin-l(k/V) I sin-l[(2k-l)/2V]

2 sin(p0)[1 - {Vsin 0 - (k - 1)}]- sin(p0)[Vsin 0
-/sin- l[(2k- 1)/2V] -/sin- l[(k- I)/V]

- (k - 1)]} + IX<v>] (18)

where IX(v>depends on (V) and is given by

7/2 sin(pO)[V sin 0 - (K - 1)] dO (V) < -
-/sin- i[(K- 1)/V] ' 2

IX<v) = f_/2 sin(p0)[l - {V sin 0 - (K - 1)}] dO (19)
dsin- 1[(2K- I)/2V]

-- sin-l[(2K-1)/2V]sin(pO)[V sin 0 -- (K - 1)] dO {V) > -
· dsin_l[(K_l)/V] ' 2 '

Evaluating the integrals of Eqs. (18) and (19) and simplifying gives the desired results. For p = 1,

K{t_] (-1)" Jp(2n'rrV) _ 2 ---V'n' + _, cos sin -1 2k 1 (20)
n=l // 4 k=l

and forp > 1 (odd),

(-1) n Jp(2nsrV) 2- cos psin -l (21)
n=l /'/ P k=l

where K' is the input amplitude Vrounded to the nearest
integer, tization distortion components for sinusoidal inputs

As desired, the infinite sum over the Bessel function using a digital computer program. The computation
is thus converted to a finite sum which involves only savings are particularly significant for low-level inputs,
cosine and inverse sine functions. Eqs. (20) and (21) that is, small values of V give a small summation range
are substituted into Eq. (6) for calculation of the quan- K'.
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