
AN APPROACH
FOR THE SEPARATION OF VOICES IN

COMPOSITE MUSICAL SIGNALS

BY

ROBERT CRAWFORD MAHER

B.S., Washington University, 1984
M.S., University of Wisconsin--Madison, 1985

TH":SIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 1989

Urbana, Illinois



l~~

JI =;
~~.~.

.--~ ~ ~-~'. -r -_ ~- _... .
__ ._-_~~...,""-"J_..l..' ': -.C/ __~

G R A D U ATE COL LEG E D E P it R T .H E N r A L FOR JI A TAP P R () V .\ L

THIS IS TO CERTIFY THAT THE FORMAT AND QUALITY OF PRESENTATION OF THE THESIS

Robert Crawford MaherSUBMITTED BY AS ONE OF THE

Doctor of PhilosophyREQUIREMENTS FOR THE DEGREE OF ---'---"-- _

Department of Electrical and Computer Engineering
Full Name of Department, Division or Una

I Date of Approval Dep artmental Reoreseniaiive

-



UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

THE GRADUATE COLLEGE

APRIL 1989
---- --~---------

WE HEREBY RECO:YIMEKD '1'1-1:\1' THE THESIS BY

ROBERT CRAWFORD MAHE=R _

E.'\TITLED AN APPROACH FOR THE SEPARATION OF
------------

VOICES IN COMPOSIT=E-=MU=S~I~C=A=L~S~I~GN=~A=LS~ _

BE .\CCEPTED 1.'\ PARTIAL rt. LFILU\TE.'\1' OF THE REULIREME.'\TS FOR

TilE DEGREE OF. D_O_CTOR OF PHILOSOPHY

Chairpcr s. .n

-

t Required for doctor's degree but not for master's.

( ) -~1 I -;



iii

AN APPROACH
FOR THE SEPARATION OF VOICES
IN COMPOSITE MUSICAL SIGNALS

Robert Crawford Maher, Ph.D.
Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign, 1989
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The simultaneous presentation of several sound sources in a performance

setting is fundamental to most music. Ensemble musical signals consist of

superpositions of multiple distinct sonic events which mayor may not be

synchronized in time, frequency, and/or amplitude. Once the distinct events

are combined and recorded in a storage medium, e.g., a digital recording, the

composite signal is often unsatisfactory in some way: the recording might

suffer from poor ensemble balance, performance errors, or corruption from

undesired background audience noises (sneezing, talking, etc.). Although it

often might be helpful to process the constituent signals independently,

separating the composite signal into its parts is a nontrivial task. The

research reported here considers particular aspects of the separation problem:

analysis, identification, tracking, and resynthesis of a specified voice from

a digital recording of a musical duet setting. Analysis is accomplished out

of real-time using a quasi-harmonic, sinusoidal representation of the

constituent signals, based on short-time Fourier transform (STFT) methods.

The procedure is evaluated via resynthesis of a "desired" signal from the

composite analysis and tracking data. Other applications include signal

restoration, digital editing and splicing, musique concrete, noise reduction,

and time-scale compression/expansion.
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PREFACE

This dissertation involves contributions from the fields of electrical

engineering, computer science, physics, music, speech and hearing science, and

psychology, so some conflicts in terminology are inevitable. Thus, a few basic

terms and their usage are defined at the outset.

» A voice indicates a single musical signal or musical line, such as the

melodic notes played by a flute or sung by a soprano. For example, a

solo has one voice, a duet has two voices, a trio has three, etc.

» A harmonic signal is a signal representable by a time-variant Fourier

series. In other words, a harmonic signal can be expressed as some

number of sinusoidal components whose frequencies are all integer

multiples of a base frequency, called the fundamental frequency or simply

the fundamental. The sinusoidal components are often referred to as

harmonics. Some inharmonic or quasi-harmonic signals may be

representable as a sum-of-sinusoids, and the general terms partials or

overtones are used to describe the discrete spectral components in this

case. Although musical sounds are not usually harmonic in a strict

sense, the signals of interest in this investigation are at least nearly

harmonic so that a meaningful fundamental frequency can be specified at

all times.

» The term timbre has been defined by the American National Standards

Institute as "that attribute of auditory sensation in terms of which a

listener can judge that two sounds similarly presented and having the

same loudness and pitch are dissimilar." This definition is a statement
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of perceptual judgment concerning the tone quality or tone "color" of a

sound. Timbre is at least related to the frequency spectrum of the

stimulus. Many attempts have been made to relate other measurable

physical parameters to the multidimensional realm of timbre perception,

but without total success. The term timbre will be used in this

dissertation to describe the general time-variant spectral properties of

a musical signal.

» Although the words fundamental frequency dnd pitch are often considered

synonyms in the vernacular, the psychoacoustic definitions differ: the

fundamental frequency is a physical quantity measured in terms of

waveform repetitions per second (Hertz), while pitch is a perceptual

phenomenon defined in terms of an empirically derived unit of measure

(such as the mel). The pitch of an acoustic stimulus is often directly

related to its frequency, but the pitch typically varies with other

parameters of the stimulus, such as its amplitude level, spectrum, or

duration. With this difference in mind, the use of the word pitch will

be eschewed in favor of frequency whenever conflicting usage might cause

confusion.
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CHAPTER 1

INTRODUCTION

Separation of signals superimposed in time is a problem of interest to

several branches of electrical engineering. The problem often appears when a

desired signal is corrupted by some undesired interference, as in the study of

radar and sonar data, the removal of reverberation in recorded speech or

music, the separation of simultaneous talkers in a communications channel, the

suppression of additive noise, etc. From a practical standpoint, the

separation task relies on prior knowledge of some aspect of the superimposed

signals whereby a set of separation criteria may be identified. For example,

if the superimposed signals occupy nonoverlapping frequency bands, the

separation problem reduces to the specification and design of frequency

selective filters. In other cases the competing signals may be described in a

statistical sense, allowing separation via correlation or some nonlinear

detection scheme. Unfortunately, many superimposed signals do not allow such

simple decomposition methods, so other strategies applicable to signal

separation must be discovered.

In the case of ensemble music, several signals generated by possibly

different musical instruments are combined in an acoustic signal which may be

captured on a recording medium via a transducer of some kind. The individual

musical signals of the ensemble mayor may not be synchronized in time,

frequency, or amplitude, and a simple statistical description of each signal

is not available for the separation task. Despite this complexity, a human

listener can usually identify the instruments playing at a given point in

time. Further, a listener with some training can often reliably transcribe
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each voice in terms of standard musical pitch and rhythm, i.e., musical

notation. Unfortunately, the methods and strategies employed by human

observers are not introspectable, and thus cannot serve easily as models for

emulation in the form of an automatic system. For this and related reasons,

the automatic ensemble separation problem remains unsolved and intriguing.

1.1 Description of Problem

Considered in this dissertation is the problem of automatic decomposition

of a musical recording into its constituent signal components (for example,

the extraction of the "trumpet" signal from a recording of a trumpet and tuba

duet) . As noted above, the human model provides an operational example of

many features of such a system, but we currently lack the knowledge of its

methods and mechanisms. Instead, a digital signal processing approach has

been used for this dissertation based on physical measurements rather than

psychoacoustic models.

For the purposes of this investigation, several restrictions on the

properties of the input signal have been employed to limit the complexity of

the decomposition procedure. First, recordings containing only two separate

voices (musical duets) are considered. Second, each voice of the duet is

required to be nearly harmonic and to contain a sufficient number of partials

(overtones) for unambiguous estimation of the voice's fundamental frequency.

Third, the fundamental frequencies of the two voices are restricted to non­

overlapping ranges, i.e., the lowest note of the upper voice must be higher

than the highest note of the lower voice. Finally, reverberation, echos, and

other correlated noise sources are discouraged since, ill effect, they



3

represent additional "background voices" in the recording and violate the duet

assumption.

Despite these restrictions, the remaining problems are formidable: the

partials of one voice will often collide with the partials of the other voice;

the duet voices may occur simultaneously or separately (and neither voice may

occur during shared rests); level imbalances between voices or added noise may

hinder the detection process, and so forth. Development of methods to

alleviate these difficulties has required the most time and effort during the

work for this dissertation.

The analysis/extraction/synthesis system has been implemented in the C

programming language on a general-purpose digital computer. The processing

time required for this implementation may be hundreds of times real-time

(1 second of sound may require several minutes of computer processing), but

for development purposes this disadvantage is more than balanced by the

flexibility and testability available with a software simulation approach.

1.2 Motivation and Applications

Recordings of music may suffer from many degradations: performance

errors during a live recording, imbalance between instrtooental lines, complex

post-recording signal processing requirements, etc. In many cases these

problems might be reduced or eliminated if the basis signals comprising the

recorded material could be extracted and processed separately. This research

was intended to develop and evaluate a method to accomplish this task.
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Additional applications of this work may be found in background noise

reduction, where musical material may be corrupted by sneezing or coughing

from an audience, wind noise, or other competing signals. The process could

also be useful as an aid in musical composition and sound production. With a

fully operational system, the analysis could be used to alter stereo imaging

and reverberation quality or to drive an automatic music transcription system.

1.3 Statement of Research Goals

The major goal of this dissertation work has been to demonstrate the

feasibility of composite signal decomposition using a time-frequency analysis

procedure. The research effort can be stated in terms of two fundamental

questions:

(1) How may we automatically obtain accurate estimates of the time-variant

fundamental frequency of each voice from a digital recording of a duet?

(2) Given time-variant fundamental frequency estimates of each voice in a

duet, how may we identify and separate the interfering partials

(overtones) of each voice?

Question (1) treats the problem of estimating the time-variant

frequencies of the spectral components contributed by each voice. Assuming

nearly-harmonic input, specification of a fundamental frequency identifies the

partial component frequencies of that voice. Conflicting (coincident) partial

frequencies may be identified and marked for further processing by comparing

the harmonic series of each voice of the duet.
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Question (2) involves the fundamental constraints on simultaneous time

and frequency resolution. The desire for high-resolution frequency domain

information necessitates observation of the input signal over a long time

span. However, long observation spans may result in an unacceptable loss of

time resolution. Thus, we must deal with inherent uncertainty in determining

the time-vs.-frequency representation of the input duet signal.

Note that it is possible to deal with question (2) without solving

question (1), assuming the time-variant fundamental frequency pair for the

duet can be identified and tabulated by some manual means. Thus, the two

fundamental questions can be treated independently, if desired.

1.4 Research Facility Overview

The research effort has been implemented in software, using the

facilities of the University of Illinois Computer Music Project. The CMP

comprises a 700 square-foot music composition and acoustics research facility

in the School of Music. The CMP contains 16-bit AID and DIA systems

supporting sample rates to 50 kHz per channel stereo, IBM RT PC, LMC, IBM PC

AT, and Macintosh computers, modems for dialup connection to the University

computing facilities, and extensive audio recording and playback equipment.

The general-purpose nature of the audio and computing equipment has provided a

comprehensive and productive environment for this research project, at the

expense of computation rates much slower than desired for production level
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signal processing ~ork. Although a final implementation of this project using

special-purpose signal processing hard~are ~ould be desirable, the available

computing environment has been nearly ideal for the development and evaluation

work described herein.

1.5 Outline of Dissertation

The narrative portion of this dissertation begins in Chapter 2 with a

brief review and summary of the relevant literature. Covered in Chapter 3 are

the fundamental theoretical tenets and procedures employed in this research.

A detailed examination of the short-time Fourier transform methods used for

this work is also included. Discussed in Chapter 4 are the significant

results, successes, and failures, followed by concluding statements and a

research summary in Chapter 5. Described in Appendix A are several practical

issues related to the specific software implementation used for this study,

and contained in APpendix B is a description of the software modules.



7

CHAPTER 2

REVIEW OF RELEVANT LITERATURE

A rcview of the reported work in composite signal separation reveals

several approaches to this problem. Most previous work has considered the

case in which the desired and interfering signals are human speech, although

some work with musical signals has been reported.

Discussed in this chapter is some of the published work related to the

topic of this dissertation. In the interest of narrative simplicity and

brevity, the mathematical details of each topic will not be repeated here.

Any specific concepts of direct importance to this dissertation will be

treated in Chapter 3.

2.1 Short-time Fourier Transform Methods

The fundamental analysis approach employed in this investigation has been

the discrete short-time Fourier transform, or simply the discrete STFT [Allen,

1977; Allen and Rabiner, 1977]. STFT methods have been well reported over the

last 15 years, primarily for analysis and synthesis in speech [Oppenheim and

Schafer, 1975; Portnoff, 1976, 1980 and 1981; Crochiere, 1980; Griffin and

Lim, 1984 and 1988; McAulay and Quatieri, 1986; Quatieri and McAulay, 1986;

Dembo and Malah, 1988], and in music [Risset and Mathews, 1969; Beauchamp,

1969 and 1975; Moorer, 1975 and 1978; Dolson, 1983 and 1985; Smith and Serra,

1987; Strawn, 1987; Maher and Beauchamp, 1988].

As will be described in Chapter 3, the STFT process can be formulated as

an identity analysis/synthesis system; i.e., the unaltered analysis data may
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Within

some restrictions, useful modifications may be made to the analysis data prior

to resynthesis. For example, we can achieve time-scale compression or

expansion of the signal while maintaining its original pitch [Portnoff, 1981;

Quatieri and McAulay, 1986]. For this investigation the identity property of

the STFT has provided the means to operate in either the time or frequency

domain as appropriate for a given processing situation.

It is often necessary to identify how the spectral content of a signal

varies with time. In particular, for signals representable as a finite sum­

of-sinusoids, the STFT can be used to estimate the amplitude, frequency, and

phase of each sinusoid as a function of time. Note, however, that the

discrete Fourier transform (DFT) provides a sampled version of the short-time

spectrum at points equally spaced in frequency. Thus, if the fundamental

frequency of the input signal is an integral divisor of the sample rate, the

fundamental frequency and each of its harmonics will coincide with frequency

samples provided by the DFT [Oppenheim and Schafer, 1975]. In general, of

course, it may be inconvenient or impossible to ensure any particular

relationship between the input signal frequency and the sample rate. In this

case, the input signal can be digitally interpolated to adjust its sample rate

prior to the STFT (time domain interpolation) [Crochiere and Rabiner, 1983],

or the short-time spectrum may be interpolated to estimate values between the

available DFT frequency points (frequency domain interpolation). Either

technique can be used to provide an improved estimate of the parameters of the

signal's harmonic components.
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2.2 Time-variant Spectral Analvsis of ~usical Sounds

Digital signal processing (DSP) techniques were used in the analysis of

musical sounds beginning in the 1960s [cf., for example, Luce, 1963; Freedman,

1965, 1967, 1968; Beauchamp, 1965, 1966, 1969; Risset and Hathews, 1969].

Most of the early work was intended to resolve the harmonic structure and

time-varying characteristics of acoustic musical instruments using a sum-of-

sinusoids model. Research was based on analysis/synthesis systems, in which

the qualities of the analysis models were evaluated by synthesizing signals

from analysis data for comparison with original sounds.

The early analysis/synthesis efforts using digital methods were all

pitch-synchronous, meaning that the input signal was divided into equal length

segments approximately one pitch-period in duration (pitch­

period = l/fundamental frequency). This allowed a standard Fourier series

representation for each cycle of the input waveform. The Fourier series

coefficients were obtained either by an explicit summation calculation or

using a fast Fourier transform (FFT) algorithm [Luce, 1963; Freedman, 1965;

Beauchamp, 1966; Moorer, 1978; Strawn, 1987]. The time evolution of the

amplitude and phase of each partial could be ascertained by examining changes

in the Fourier series coefficients from cycle to cycle.

These pitch-synchronous analysis methods required close to an integral

number of digital samples per cycle of the input waveform. Since the period

of the signal was not necessarily a multiple of the sample period, linear

interpolation was often used to generate values between the given sample

points (Luce, 1963; Beauchamp, 1969]. The continual adjustment necessary to
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match the input period with the length of the analysis window for signals

having substantial vibrato or other frequency variations was problematical.

More recently, the sinusoidal analysis procedure (for speech) of McAulay

and Quatieri [1986J has been applied to the problem of time-variant analysis

of musical signals [Serra, 1986; Smith and Serra, 1987; Maher and Beauchamp,

1988J. In this method, each "peak" in a high-resolution STFT is attributed to

an underlying sinusoidal component with time-varying amplitude, frequency, and

phase. While using a fixed window length, the analysis procedure makes no

attempt to synchronize with the fundamental frequency of the input signal.

However, interpolation of the short-time magnitude spectrum is used to improve

the frequency resolution of the analysis and to avoid problems due to mismatch

between the period of the input signal and the length of the analysis

transform. A nearest-neighbor tracking and matching procedure is used to

connect the features (peaks) of each frame of the STFT with corresponding

features in adjacent frames, providing a list of sinusoidal component

trajectories (tracks) in terms of amplitude and frequency vs. time. A version

of the McAulay and Quatieri method (referred to as the 'MQ' method for the

remainder of this dissertation) will be presented in detail in Chapter 3.

2.3 Co-channel Speech Separation

In the case of speech there have been several investigations of the

performance of human listeners in monaural and binaural voice-separation tasks

[Cherry, 1953; Sayers and Cherry, 1957; Mitchell et al., 1971; Brokx and

Nooteboom, 1982; Zwicker, 1984; Weintraub, 1985J. There is evidence that

listeners use both monaural cues and binaural processing to invoke the so-
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called cocktail-~ effect, in which a listener isolates the speech of a

desired conversation while ignoring the numerous competing talkers in the

vicinity. Yanagida et al. [1985] considered separation of the speech of

several talkers by the use of multiple microphones using multi-channel

deconvolution, but most other research in this area has dealt with co-channel

speech separation (separation of interfering speech from a monaural input

signal) . Note that the co-channel case cannot take advantage of the binaural

cues normally available to a listener in the classic cocktail-party effect.

Shields [1970] and Frazier et al. [1976] attacked the speech separation

and enhancement task using variable and adaptive filters. These researchers

attempted to improve speech quality and separation by the design of frequency

selective filters to pass and reject the desired and interfering spectral

components, respectively. However, if the desired and interfering signals

were of nearly the same strength, simply passing or rejecting certain spectral

bands could not produce an adequate separation because of the inevitable

overlap of the desired and interfering spectral components. In fact,

intelligibility tests by Perlmutter et al. [1977] showed that the "desired"

speech obtained by the Frazier method was actually less intelligible than the

unprocessed co-channel input signal itself.

Everton [1975] approached the co-channel speech problem by estimating the

center frequency and bandwidth of each formant (broad spectral resonance) for

the two simultaneous talkers, as well as the fundamental frequency of each

talker. The frequency and formant data were then supplied to a speech

synthesizer system for artificial reconstruction of the desired speech. Thus,

Everton's method may be considered an analysis/synthesis procedure:
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parameters of a synthesis model were derived from an analysis of the input

signal. Note that the use of an analysis/synthesis method implies that the

signal of interest can be represented adequately by some finite number of

synthesis parameters, and that the parameters can be obtained reliably from

the input signal.

Parsons [1976] developed and evaluated the harmonic selection algorithm

for separating co-channel speech signals. The harmonic selection approach

assumed that each talker in the composite input signal was using voiced

(periodic) speech, i.e., the magnitude spectrum of each speech signal

consisted of a harmonic series of peaks corresponding to the fundamental

frequency and its overtones. In this method, the short-time Fourier transform

(STFT) of a two-talker speech signal was obtained. For each short-time

analysis frame, the fundamental frequencies of the two talkers were estimated,

and the spectral features corresponding to each fundamental frequency and its

overtones were separated. The separated components were used to reconstruct

the desired speech signal in an STFT synthesis procedure. Although Parsons

did not conduct any formal listening tests, Stubbs and Summerfield [1988]

recently evaluated Parsons' harmonic selection algorithm using simultaneous

vowel sounds: the harmonic selection algorithm was found to improve

intelligibility for both normal hearing and hearing-impaired listeners.

More recent work on the co-channel speech separatiJn problem has been

reported using the harmonic magnitude suppression (HMS) algorithm [Hanson and

Wong, 1984; Naylor and Boll, 1987]. Hanson and Wong applied their HMS

algorithm to co-channel speech samples in which the desired talker was the

weaker of the two voices, reasoning that a signal with a negative signal-to-
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noise ratio (SNR) would be the case most in need of improvement in

intelligibility. Thus, rather than attempting to estimate the parameters of

the relatively weak "des i red" speech, Hanson and Wong estimated the magnitude

spectrum of the interfering voice, then subtracted it from the magnitude

spectrum of the co-channel speech signal. In other words, the approach was to

suppress the interfering speech, presumably leaving the desired speech in a

more intelligible form.

The study by Hanson and Wong did not consider unvoiced (noisy)

interfering speech suppression, but Naylor and Boll [1987] extended the HMS

algorithm to unvoiced speech, additive noise, and channel distortion. Naylor

and Boll also modified the HMS algorithm to enhance the desired signal in

cases where the interfering signal was the weaker of the two components.

Lee and Childers [1988] developed a co-channel speech separation

procedure employing multisignal minimum-cross-entropy ~ectral analysis

(multisignal MCESA). The MCESA procedure was used to refine an initial

spectral estimate of the desired speech by the use of the autocorrelation of

the co-channel signal. The separation process consisted of two steps. First,

a preliminary estimate of the desired speech signal spectrum was obtained

using either Parsons' harmonic selection algorithm [1976] or the HMS algorithm

of Naylor and Boll [1987]. Next, this preliminary spectral estimate and the

autocorrelation function of the co-channel input signal were processed using

multisignal MCESA. The desired speech was reconstructed using either STFT
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methods or a linear predictive coding (LPC) speech synthesis process. Lee and

Childers found that while intelligibility was improved by the separation

procedure, the resulting speech was often "mechanical" and less natural in

quality.

Danisewicz and Quatieri [1988J considered a co-channel speech separation

approach using a sinusoidal analysis/synthesis model of speech. In this

model, speech was represented as a sum of sinusoids with time-varying

amplitudes, frequencies, and phases [McAulay and Quatieri, 1986]. For the

co-channel input signal, Danisewicz and Quatieri calculated least-squared

error estimates of the sinusoidal model parameters for both talkers, and

reconstructed the desired speech using the parameter estimates in an additive

synthesis procedure based on the sinusoidal model. The research included a

multi-frame interpolation strategy to help predict the behavior of the model

parameters during analysis frames where both talkers were at nearly the same

fundamental frequency, causing difficulties with the least-squared error

separation criterion. Danisewicz and Quatieri found the results to be useful

for a range of signal conditions, and suggested that further work on multi­

frame interpolation and continuity might improve the separation procedure.

2.4 Segmentation and Analysis of Musical Signals

The analysis of musical signals includes work in psychoacoustics,

perception, and modeling of timbre [cf., for example, Helmholtz, 1885;

Fletcher, 1934; Berger, 1964; Saldanha and Corso, 1964; Luce and Clark, 1967;

Grey, 1975; Benade, 1976; Beauchamp, 1981; Slawson, 1982; Gordon, 1984;

McAdams, 1984; Dolson, 1985; Wessel, 1985], and other work has treated digital
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signal processing applications in music processing [Dodge and Jerse, 1985].

For example, Stockham [1971] applied several DSP methods in the restoration

and enhancement of old mechanical recordings of Enrico Caruso.

Wold and Despain [1986] have reported on preliminary work in the

separation of composite musical signals by parameter estimation in

structurally accurate nonlinear physical models of each sound source. They

report that up to 300 states must be estimated in order to separate two

clarinet sounds--a formidable computational task. Moreover, such an approach

involves re-estimation of many states whenever the derived model changes (at

note boundaries, for example), and distortions of the model parameters may be

necessary to account for room resonances, acoustic transmission effects, and

so forth.

Some of the relevant work on the analysis of musical recordings has been

intended for automatic transcription of musical pitch and timing information

into standard music notation or some other form of tabulation [Moorer, 1975;

Piszczalski and Galler, 1977; Chowning et al., 1984; Mont-Reynaud and

Goldstein, 1985; Schloss, 1985]. Although the sound separation task described

in this dissertation differs from the musical transcription task in several

ways, the two topics do share some fundamental concerns.

Attempts to transcribe an arbitrary musical recording into notation have

been fraught with difficulties due to the immense differences between various

input signals. A wide range of variables due to choice of orchestration,

musical style, and common performance practices must be confronted. The

transcription task requires identification of the attack and release times of
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each musical note, determination of musical pitch, and correlation of

identified notes with standard musical forms and constructs. A fully

operational automatic system would be required to specify measures and bar

lines, clefs and key signatures, note types (such as whole, half, or

sixteenth), musical lines and phrases, etc. In short, the automatic

transcription system must be aware of the correct musical notation form

implied by the only available observation of the performance, the recorded

signal itself. Sophistication at such a high level rapidly enters the domain

of artificial intelligence (AI) [Chowning et al., 1984], or at least

knowledge-based recognition of musical form [Chafe et al., 1982].

Moorer's doctoral dissertation [1975] was a seminal effort in the area of

automatic transcription of polyphonic music. In order to simplify the task,

Moorer considered only musical duets and disallowed vibrato, glissandi,

staccato notes (less than 100 milliseconds in duration), and consonant tunings

(simultaneous notes in which the fundamental frequency of one note was the

same frequency as one of the partials of the other note). The approach was to

identify the basic periodicities in the input signal using the "optimum comb"

(or absolute magnitude difference function) method [Moorer, 1974], then to

extract the assumed harmonics using a series of bandpass filters centered at

each harmonic frequency. In other words, Moorer identified the harmonic

components present at a given point in time, and then attempted to deduce a

basic harmony to account for the observed frequencies. Various heuristic

rules were employed to segment the raw data into notes, rhythms, and musical

lines.
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Moorer reported that the system identified the pitches and starting times

of notes with significant accuracy but frequently underestimated their

duration. This result indicated a fundamental problem with performance-based

automatic transcription: A performer uses his experience with a particular

musical style and musical instrument in such a way that the notes actually

played may differ substantially in a quantitative sense from the printed

score. Thus, quantitative measurements may not be enough to produce a

transcription suitable for music printing.

Piszczalski and Galler [1977] attempted to transcribe recordings of

monophonic music using an approach similar to but different from that of

Moorer. They obtained a time-variant spectral analysis using fast Fourier

transforms (FFTs) of successive segments of the input signal. Next, spectral

peaks in the analysis data were used to infer which musical pitches might best

account for the observation on a frame-by-frame basis, note boundary decisions

were made, and a printed score was produced. The attempts of Piszczalski and

Galler did not consider polyphonic input, but did include effort toward a

higher level of analysis: use of musical constructs to infer a performer's

intent from a recording of an actual musical performance.

Since Moorer's thesis work at Stanford University (1975), investigation

of automatic transcription has continued at Stanford's Center for Computer

Research in Music and Acoustics (CCRMA, pronounced 'karma'), [Chafe et al.,

1982; Foster et al., 1982; Chowning et al., 1984; Mont-Reynaud and Goldstein,
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1985; Schloss, 1985]. The common approach has followed Moorer's pattern: a

time-frequency analysis is followed by one or more stages of segmentation and

refinement based on musical knowledge, pattern recognition, and various

heuristic methods.

Chowning and Mont-Reynaud [1986] reported further work at Stanford in

artificial intelligence applications for musical analysis and transcription.

The recent work has focused primarily on the representation and automatic

identification of simultaneous acoustic sources in a monaural signal, which is

closely related to the work reported herein. However, while the increased

level of abstraction evident in the work of Chowning and Mont-Reynaud provides

more insight into the areas of AI and machine perception, it focuses less on

the pragmatic issues related to signal processing system design and

implementation, as considered in this dissertation. For the moment, it is

sufficient to acknowledge that any complete solution to the problems of

automatic transcription and composite signal separation will undoubtedly

require both cognitive (i.e., AI) and procedural (i.e., DSP) processing.
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CHAPTER 3

RESEARCH APPROACH AND METHODS

Described in this chapter is the theoretical basis for the

analysis/synthesis methods employed in this dissertation. The concepts

associated with short-time spectral analysis and the McAulay-Quatieri approach

are considered first. Next, the simultaneous frequency tracking algorithm

developed for musical duet signals is explained. Finally, the various

techniques for separating the composite signal components are discussed.

The fundamental approach for this research is time-frequency analysis

using the short-time Fourier transform (STFT). As mentioned in Chapter 2, the

STFT has been widely used in the analysis of time-varying signals, such as

speech and music.

For the duet separation problem the approach is to identify and separate

the spectral components belonging to each voice from a sequence of high-

resolution, short-time spectra of the composite signal. The STFT provides

such a representation, so it was chosen as the analysis front-end for this

investigation.

3.1 Short-time Fourier Transform Analysis

The STFT may be expressed in discrete form as [Allen and Rabiner, 1977)

X(n,k)
m= -eXJ

w( _ ) ( ) -j2~mk/Ln rn x m e
(3.1)
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with the definitions

x(m)
w(m)

L

X(n,k)

a signal defined for any sample time m
= a lowpass impulse response (window) function defined for any m

number of equally spaced (in frequency) analysis
channels between 0 Hz and the sample rate

short-time Fourier transform of x(m) at every sample time n,
at normalized radian frequency 2TIk/L, where 2TI
corresponds to the sample rate

For the remainder of this thesis, the window function w(m) is assumed to be

real with even sYmmetry about the origin (noncausal, zero phase) and nonzero

only for a finite range of points centered about the origin (see Harris [1978]

for a description of various window functions). Note that with w(m) nonzero

only for a finite range of m, the summation in (3.1) becomes finite. The 5TFT

analysis Equation (3.1) takes the one-dimensional signal x(m) and generates a

two-dimensional representation, X(n,k). The corresponding synthesis equation

will be discussed later.

Equation (3.1) can be examined from two viewpoints: filter-bank analysis

and overlapped Fourier transform analysis. The two viewpoints differ only in

that they represent different interpretations or implementations of the

transformation expressed in Equation (3.1).

The filter-bank approach treats the 5TFT as a bank of L identical

bandpass analysis filters, or analysis channels, centered at equally spaced

frequencies, 2TIk/L. The notation Xk(n) is used here to emphasize the k

subscript, i.e., the kith analysis channel is observed as a function of time,

n. The operation is repeated for each index k at each time n.
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Equation (3.1) can be rearranged to express this v:ewpoint as

X(n,k) L x(m)
, 1

al~ m

T,>wT rn - rn )

(3.2)

which IS either the discrete convolution

1:., (n)
K

or

1:., (n)
K

- i 27rnk/L
= e ~ . {x (n) * . +i27rnk/L

le ~ "",(n)]

(3.3a)

(3.3b)

In (3.3a), the input signal x(n) is modulated by the complex exponential term,

while the window remains a lowpass filter. The modulation translates the

input signal's spectrum at normalized frequency 2nk/L (corresponding to

k'(sample_rate)/L Hz) down to zero frequency, where it is filtered by the

lowpass window response. The grouping of terms given in (3.3b) represents an

equivalent interpretation. Equation (3.3b) can be derived from (3.2) using a

change of variables, (e.g., q = m-n). The complex exponential factor

exp(-j2nnk/L) is a term which accounts for the difference between the time

scale relative to a fixed time origin, as in (3.3a), and the sliding time

scale of the window function, as in (3.3b). This linear phase shift does not

change the magnitude of Xk(n), only its phase reference [Crochiere, 1980).

The second term of the convolution in (3.3b) is a modulation of the window

function w(n) by a complex exponential. The result is a frequency shift of

the transform of w(n) by the amount 2nk/L (or k'(sample_rate)/L Hz),
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translating its lowpass response into a bandpass response centered at

frequency 2nk/L, resulting in the filter-bank format. Either of these

viewpoints is sometimes referred to as the heterodyne filter, because of the

modulation of either the signal spectrum or the window function spectrum in

heterodyne fashion. The filter-bank representation is shown in Figure 3.1a.

...J Channel 0
, ...

~(n).. I I ..
~ Channel 1 I ... X1(n)I I ..

x(n)
~ Channel 2 I .. X

2
(n)....1 I ...

~ Channel L-11--4.~ XL- 1(n)

For each analysis channel 'k':

x(n)

-j21tnk/L
e

}---+---.. Xx (n )

w(n)

Figure 3.1a: Filter-bank Analysis Viewpoint of the STFT.
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The second viewpoint of Equation (3.1) is as an overlapped Fourier

transform. This viewpoint can be expressed as

X(n,k) X (k)
n

" () -J'2Jrmk/L"- y 1Il e
all m 0.4)

where y(m)= w(n-m)x(m), the windowed input signal.

In other words, an intermediate signal y(m) is computed by reversing and

shifting the analysis window, then multiplying it by the input signal x(m).

In this case the notation ~(k) can be used to emphasize that the Fourier

transform computed at time n is observed as a function of the frequency index

k. For each time n, in effect, "snapshots" of the spectrum of x(n) are

computed. This representation is shown in Figure 3.1b.

Recognizing that the limits on the summation in Equation (3.4) must be

[zero] and [L-1] in order to compute ~(k) in normal DFT form, the

substitution { q = m-n } may be made in (3.4) to obtain

X (k)
n

-J' 2Jrnk/L "
= e ' "-

all q

-i21fqk/L
'N( -q) x(n+q) e oJ ,

(3.5)

which may be rewritten as a summation segmented into blocks of length L, using

{ q = pL + r },

X (k)
n

e-j2Jrnk/L 2:

all p

L-1
2: w(-pL-r) x(n+pL+r)

r=O

- j 21f(pL+r) k.z L
e •

(3.6)
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Fourier Transform

Figure 3.1b: Fourier Transform Viewpoint of the 5TFT.

Exchanging the order of summation,

X (k)
n

-J" 21fnk/L
e '

L-l
l:

r=O
l: w(-pL-r) x(n+pL+r)

all p

-j27f(pL+r)kjL
e

(3.7)

and noting that with the total non-zero length of w(m) <= L, the product

w(-pL -r) x(n + pL + r) can be non-zero ONLY for p=O (since w(k) = 0 for
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k >= L/2 or k < -L/2),

X (k)
n

-i2wnk/Le ~

L-1

r=O
(3.8)

The multiplication by exp(-j2TInk/L) in (3.8) can be accomplished by a circular

shift of the windowed data prior to the summation, and the summation itself

can now be calculated using an FFT algorithm [Portnoff, 1976].

The Fourier transform viewpoint requires a series of overlapping short-

time Fourier transforms of the input signal. The overlap may seem

unnecessary, considering that the original signal can be reconstructed exactly

from the inverse transforms of concatenated nonoverlapping segments. This

observation would be useful and reasonable if the only interest was in

obtaining an identity analysis/synthesis procedure. However, for the duet

separation problem (and for other tasks) it may be useful to interpret and

modify the frequency domain representation of the signal, which requires

knowledge of the signal for every frequency index k at every time n.

Since Equation (3.1) can be expressed and interpreted in either the

filter-bank or Fourier transform viewpoints, the form which is most useful or

convenient for a particular task can be chosen.

At this point in the description X(n,k) consists of L complex numbers for

every time n. Thus, it would appear that the storage requirements of the STFT

are 2L times the storage needed for a real signal x(n)! However, these data

explosions can be reduced by careful examination of the STFT representation.
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3.2 Sampling the STFT: X(n,k)

So far, each input sample has been represented by L complex numbers in

the 8TFT, X(n,k). One question is whether the function X(n,k), considered as

a time sequence in n, can be sampled at a lower rate while still obeying the

Nyquist theorem. Another question is how big L must be to obtain an adequate

frequency resolution in the STFT representation of the signal. In short, we

wish to find the appropriate time and frequency sample rates.

The appropriate time sampling rate for X(n,k) can be selected by

examining the filter-bank representation of the STFT. Since each of the

channel sequences Xk(n) was shown to be the output of a lowpass filter with

impulse response wen), each of the sequences must have a bandwidth less than

or equal to that of the window. So if the window transform is bandlimited to

B Hz, the output sequences Xk(n) need only be sampled at 2B Hz or greater to

satisfy the sampling theorem. Thus, if the input signal has a sample rate of

20 kHz and the data window is bandlimited to 250 Hz, the STFT X(n,k) must be

evaluated at a rate of at least 500 Hz to avoid aliasing. A 500 Hz frame rate

for a signal sampled at 20 kHz means the analysis need only be done every 40

samples of the input signal (20000/500), rather than at every sample.

spacing between frames can be called the analysis hop, R.

This

The frequency sampling density (size of L) can be realized by noting that

the inverse Fourier transform of X(n,k) is time-limited due to the finite

length of the window function. Thus, we may apply the frequency domain

equivalent of the sampling theorem for bandlimited signals. The frequency

sampling theorem for time-limited signals states that a signal of total
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duration N must be sampled at L ~ N equally spaced frequencies between zero

frequency and the time-sampling frequency f s to fully represent x(n) without

time-domain aliasing. Note that this condition is trivially satisfied by

making L greater than or equal to the length N of the analysis window

function.* If L is chosen to be greater than N, the samples outside the

window interval are deliberately set to zero. This zero padding in the time

domain is equivalent to bandlimited interpolation in the frequency domain and

represents an increased sampling density of the short-time spectrum.

By properly choosing the window length, sample rate, bandwidth, etc., for

a particular class of input signals, the 8TFT storage requirements can be

reduced considerably. An additional savings is due to the fact that the

Fourier transform of a REAL-only time sequence is conjugate sYmmetric in k,

that is,

X(n,k)=X*(n,(L-k)mod L) (3.9)

where L is the transform length, and (.)mod L is the L-modulus of (.), and

X*(.) is the complex conjugate of X(.).

The 8TFT sampling issues discussed above apply in the case where a time

domain waveform is to be resynthesized from the unmodified 8TFT analysis data.

If modifications are made to the analysis data (e.g., to implement time scale

compression or expansion), the appropriate time and frequency domain sampling

* L is typically chosen to be an integral power-of-two, because many FFT
algorithms impose this requirement.
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rates may need to be greater than in the unmodified case in order to avoid

aliasing. Synthesis from modified data is considered in a later section of

this chapter.

3.3 Short-time Fourier Transform Sj?thesis

Like the ordinary Fourier transform, the STFT can be inverted to

resynthesize an exact copy of the original signal. The synthesis operation

can be interpreted using the same filter-bank and Fourier transform viewpoints

used in the analysis step.

For filter-bank synthesis the frequency channel sequences Xk(n) are

modulated back to their original frequency bands and added together at each

time n. This gives a synthesis equation

L-l
x(n) = l:

k=O

X_ ') - j 21fnk/L
-1<\n e

(3.10)

This equation can be verified by replacing Xk(n) with the expression of

Equation (3.2), giving

x(n)
L-l
l:

k=O
( l:
all m

- j 2uk/Lx(m) e . '..;(n-m) +j21fnk/L
e

(3.11)

Reordering and regrouping this expression,



x(n) L:
all m

x(m) wen-my
L-l

L:
k=O

+j27r(n-m)k/L
e

0.12)
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Noting that the summation over k of the complex exponential is zero EXCEPT

when the quantity (n-m) is an integer multiple of L, i.e., 0, +/-L, +/-2L, ... ,

for which the sum is L. Thus, the summation over k can be replaced by a

series of L-weight unit sample functions (delta functions, 6(n)) that "fire"

only at multiples of L,

x(n) L:
all m

x(m) wen-my L: L· 5(n-m-rL)
all r 0.13)

The summation over rn is only nonzero when the delta function is nonzero, that

is, only when { rn = n-rL}. Making this substitution,

x(n) = (L) L x(n-rL) w(rL)
all r 0.14 )

Choosing w(n) of duration N samples, and L>=N, then w(rL) is zero EXCEPT when

r=O. Finally,

x(n) (L) w(O) x(n)
O.lSa)

or



xt n ) = A'x(n)
0.15b)
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where A is a constant scale factor, which can be included implicitly by

appropriate scaling of the window function, w(n), prior to analysis. Thus,

the filter-bank synthesis procedure EXACTLY inverts the STFT.

Note that the filter-bank procedure requires X(n,k) at the original input

sample rate, so if the analysis were performed with a hop other than one, the

missing values of X(n,k) must be produced by interpolation of the X(sR,k)

sequences.

1976].

Methods for performing this task are discussed in [Portnoff,

The STFT synthesis procedure can be formulated as an overlap-add (OLA)

operation. The STFT analysis frames are inverse transformed, then shifted,

overlapped, and added in such a way as to resynthesize the input signal.

The desired synthesis equation is [Allen and Rabiner, 1977]:

x(n) 2:
all m

L-1
2:

k=O

X (k) e+j2mkjL
m 0.16)

Assuming that the 5TFT was obtained using a properly chosen analysis hop size,

R, the desired s)~thesis equation becomes

L-l
x(n) = 2: 2: X(sR,k) e+j2~nkjL

all s k=O 0.17a)
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The summation over k in (3.17a) is almost the inverse DFT of X(sR,k), namely

L-1
Z X(sR,k)

k=O

+j27fnk/L
e (L) x(n) w(sR-n) .

(3.17b)

Combining (3.17a) and (3.17b),

x(n) Z (L) x(n) w(sR-n)
all s (3.18 )

or simply,

x(n) (L) x(n) Z w(sR-n)
all s (3.19)

The summation in (3.19) is the sum at time n of copies of the window function

wen) shifted by multiples of the hop size, R. So if the sum in (3.19) is a

constant for all nand s, the OLA process can EXACTLY invert the 5TFT.

Fortunately, it can be shown that any function wen), which is bandlimited to

frequency B= 1/(2R) and has discrete-time Fourier transform W(w), can be

expressed using the Poisson summation formula [Allen, 1977]

Z w(sR -n)
all s

(l/R) Z W(m/R)
all m

- j 2rrrnk/Re
(3.20 )

Since W(w) is bandlimited to (1/2R), all terms of the summation over m on the
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~

right hand side are essentially zero EXCEPT the m=O term." Thus, the Poisson

formula reduces to

~ w(sR -n)
all s

(1/R) W(O) CONSTANT for all s, n
(3.21)

The result is that any lowpass window function can be used in the OLA

procedure if the analysis frames are overlapped with a spacing of at most

R= 1/(2B). This may seem counterintuitive at first, but it may be more clear

by considering what happens to the sum of overlapping window functions as the

size of the hop is made smaller and smaller: The ripple in the sum of the

overlapped windows can be reduced to some arbitrarily small amount, as shown

in Figure 3.2. The Poisson formula shows how big the hop may be for a given

window specification and performance criterion. It is important to realize

that the summation term in Equation (3.19) may be a constant for certain

window functions (e.g., rectangular) when the spacing of the overlapped

windows is greater than the maximum predicted by the Poisson formula. In

these cases the original signal can be resynthesized exactly from the

unmodified short-time transform using the overlap-add procedure. However, the

frequency domain representation of the signal is an undersampled version of

the STFT, which may result in unacceptable time-domain aliasing if the STFT

data were modified prior to resynthesis. Therefore, we may use an

undersampled STFT to reduce computation only if no modification of the STFT

data is required prior to resynthesis.

* However, any time-limited window function cannot be strictly bandlimited,
so Equation (3.21) must be taken as an approximation that can be made accurate
to any arbitrary degree by the choice of window function parameters.
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Window Length 512

Spacing = 530
(no overlap)

Spacing = 300
2.7 dB ripple

+-__-+-__+- +--__--+--------__-----t----__........_..+___ __-+- -+__-----+---_--------i

Spacing = 200
0.72 dB ripple

+--__+- +--__+-1----.. ---+------ --i------ ~._--4---- -----+ -------+-----~,--~

I
1

Spacing = 50 +
0.0085 dB ripple t

±---+--___+_----+----------i>-----+-------+---------+--t------<------;

Figure 3.2: Sum of Overlapped Windows for Various Spacings.
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3.4 STFT Synthesis with Modifications

In many applications, including the voice separation problem, it is

desirable to obtain the STFT, perform some linear (or nonlinear)

modifications, and then resynthesize the processed version. Examples of

modifications are data quantization in a vocoder, time-varying filtering, or

nonlinear time-scale and/or frequency-scale changes. The main concern for

synthesis from modified STFT data is to ensure that the modifications do not

violate the frequency-sampling (L) and time-sampling (R) choices made during

the analysis process. For example, applying a multiplicative operation to the

STFT data is equivalent to a convolution operation of the inverse transforms

in the time domain. Convolution generally "smears" the time extent and detail

of a signal, so any original assumptions concerning the time characteristics

of the input signal must be adjusted to include the effects of the smearing.

Several of the voice separation methods described in Chapter 2 contain

modifications of the STFT data prior to resynthesis, so the analysis

parameters must be chosen with care. Depending on the nature of the input

signal, it may be necessary to choose a different value of Land/or R to

account for the change in impulse response length due to the convolution to

prevent time domain aliasing (audible reverberation) during synthesis.

3.5 A Variation of the STFT Concept: The MQ Analysis/Synthesis Procedure

McAulay and Quatieri (1986) proposed an analysis/synthesis procedure for

speech based on a sinusoidal representation. Their approach was to model

speech waveforms as a sum of possibly inharmonic, time-varying, sinusoidal
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Described in this section is the basic MQ analysis/synthesis

model, and the modifications made for the duet decomposition

considered in this dissertation are indicated.

problem

The basic McAulay and Quatieri (MQ) signal model assumes a priori that

each segment of the input, x(n), consists of a finite number of sinusoidal

components, J. Each component may have arbitrary amplitude (ak)' angular

frequency (wk)' and phase (~k)' Thus,

J
x(n) ~ ~ ak cos(wk·n + ~k) •

k=l (3.22)

Note that both harmonic and inharmonic signals can be accommodated in the MQ

model, unlike the equally spaced filter bank of the standard STFT.

Like the STFT, the MQ process assumes that the parameters of the signal

may be time-variant, so the amplitude, frequency, and phase parameters must be

updated frequently to remain a valid representation of a time-varying input

signal. The computational challenge for this model resides primarily, of

course, in the decomposition of the input signal into sinusoidal components

with meaningful amplitude, frequency, and phase parameters.

Synthesis using the model can be accomplished via a simple additive

procedure, where each of the J components is regenerated by a sinusoidal

oscillator with amplitude, frequency, and phase modulation applied according
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to the analysis model parameters. However, extra care is required to "unwrap"

the phase parameter, due to the inherent range ambiguity of the principal

value.

According to the original MQ analysis algorithm, the input signal is

segmented into blocks of length N (possibly overlapping), each block is

windowed with an appropriate lowpass window (as in the STFT analyzer), and its

discrete Fourier transform is computed via an FFT algorithm. For each DFT the

magnitude spectrum is calculated, and all peaks in the spectrum are identified

simply by searching for groups of three adjacent spectral samples where the

magnitude's slope changes from positive to negative. McAulay and Quatieri

assume that each peak may be attributed to the presence of an underlying

sinusoidal component during the current segment of the input signal. Once all

the peaks are determined, the complex (real,imaginary) spectrum is used to

identify the phase information for each peak, and the amplitude, frequency,

and phase values for each peak are stored in a data structure. The number of

peaks chosen in each data frame can be limited by 1) selecting only the

tallest K peaks or by 2) imposing some amplitude threshold. The MQ analysis

procedure is depicted in Figure 3.3.

One difficulty in the peak identification procedure is due to the limited

density of frequency points resulting from the discrete Fourier transform

(DFT). Indeed, the actual frequency of an underlying sinusoidal component may

lie BETWEEN the frequency samples of the DFT. This limitation can be reduced

by 1) increasing the density of the DFT frequency samples by means of a longer

zero-padded DFT and by 2) using an interpolation method on the magnitude

spectrum itself [Smith and Serra, 1987].
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Input Signal, x(n)
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MQ Format

Figure 3.3: The Basic MQ Analysis Procedure.
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The frequency density of the DFT is increased by zero-padding the input

data frame prior to the FFT procedure. Typically, padding has been used to

increase the FFT frame length to be the next higher power of 2. As mentioned

previously, the zero-padding of the time-domain input frame corresponds to

band-limited interpolation in the spectral domain. However, zero-padding adds

to the length of the input frame, increasing the computation required to

calculate the DFT. Thus, the computation load can be reduced by choosing a

padding factor only as large as is necessary for an efficient secondary

interpolation method to achieve the desired accuracy.

A simple second-order (3-point) interpolation scheme is used to refine

the estimated peak location between the DFT points [Smith and Serra, 1987].

The use of second-order interpolation implies that the spectral magnitude

shape in the vicinity of the peak is nearly parabolic, which is reasonable if

the spectrum has been sufficiently oversampled by zero-padding.

The three points comprising the identified peak define a unique parabola

passing through them. Constructing a coordinate system in which the arbitrary

abscissa units -1, 0, +1, are aligned with the equally spaced DFT points

surrounding the peak, a simple system of equations yields the parabolic peak

location, as shown in Figure 3.4. This identifies both the amplitude and

frequency of the underlying sinusoid attributed to the peak.

After the frequency and amplitude estimates are obtained from the

magnitude spectrum, the complex coordinates (real, imaginary) of the peak are

estimated by performing independent second-order interpolations for the real

and imaginary parts of the three points surrounding the peak. These functions
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coordinates: (-1 Y) (0 ) (+1 ), 1, 'Y2' 'Y3

frequencies: w_ l , wo' wl ~ DFT point frequencies

- 1 0 +1

x
p

parabola: y(x) = A'x 2 + B·x + C

equations: I. y(-l) = Y1 A - B + C

II. y CO) Y2 C

III. y(+l) = Y3 = A + B + C

results: A = (Y1 - 2Y2 + Y3)/2; B = (Y3 - Y1)/2; C Y2

x-coordinate of the parabola peak:
yl(xp) = 0 = 2A'xp + B

xp = -B/2A

0.5(Y1-Y3)/(Y1 -2Y2 +Y3)
frequency estimate for peak:

W = W .(l-x ) + W ·xo p 1 p

magnitude estimate for peak:
a = y(xp)

Figure 3.4: Parabolic Interpolation of Spectral Peak Location.
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are evaluated at the frequency obtained from the magnitude parabola maximum,

and the resulting complex coordinate provides an estimate of the phase of the

underlying sinusoid, i.e., ~k= -atan(imag/real).

The analysis and peak identification process is repeated for successive

frames of the input signal. The spacing, R, between the frames (the hop size)

is chosen as a tradeoff between the computation expense associated with a

small hop, and the loss of time resolution due to a large hop. The hop size

can be selected according to the frequency-domain sampling criteria described

previously for the 8TFT analyzer.

In most practical cases the sound spectrum presented to the MQ analyzer

varies considerably with time, so that the number of detected components and

their frequencies will, in fact, change from frame to frame. For this reason

a matching procedure is performed to connect components from frame [i] with

corresponding ones from frame [i+1] and thus track the time-varying sinusoidal

components. The following steps are used in the tracking procedure:

1) The frequencies of components (i.e., the peaks) identified in each frame

are sorted from lowest to highest.

2) Each peak in frame [i] is compared to the peaks in frame [i+1]. If the

frequency of a peak in frame [i+1] lies within an arbitrary capture range

of a peak in frame [i], and no other match is better, then the two

matching peaks are linked in the analysis data base. The capture range

specifies how much the frequency of a component may change between

analysis frames and still be considered a valid match.
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3) Any peak in frame [i] that cannot be matched to any of the peaks in frame

[i+1] is considered "dead," and a null peak is inserted into frame [i+1].

The null peak is assigned zero amplitude, the same frequency as its

progenitor, and a phase value calculated from the previous phase value,

the frequency, and the known time interval (R/sample rate) between frames

(using phase= f frequency dt).

4) Similarly, any peak in frame [i+1] that was not matched by a peak in

frame [i] is "born," and a corresponding null peak is inserted into frame

[ i] .

Once the peak-matching process on the current frame is complete, the

procedure is repeated for the subsequent data frames. The final output

database consists of chains of peaks, or "tracks," which trace the behavior of

the underlying sinusoidal components comprising the signal, as shown in Figure

3.5.

Synthesis with the MQ method is performed with an additive synthesis

procedure based on the MQ analysis data. Each frequency track is used to

control a sinusoidal oscillator, whose amplitude, frequency, and phase are

modulated in such a way that they exactly match the measured values at the

frame boundary times and change smoothly between frames. Linear interpolation

has been found to be adequate for the amplitude values, but the frequency and

phase values require more careful treatment [McAulay and Quatieri, 1986; Smith

and Serra, 1987].

Since the phase values are obtained relative to the sliding analysis

frame reference, i.e., modulo 2n, some means must be incorporated to choose
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Figure 3.5: MQ Analysis Representation of a Time-varying Signal.

the correct phase angle from the measured principal angle. The process of

selecting the actual phase value from the modulo 2n principal value is called
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Since the continuous-time phase and frequency functions

are related by the time derivative, they are incapable of fully independent

variation. The problem becomes one of choosing a phase interpolation function

between each pair of linked peaks whose slope (instantaneous frequency)

matches the measured frequency at the frame boundaries, and whose phase

corresponds to the measured phase unwrapped to provide a maximally smooth

frequency function. The phase and frequency continuity constraints (phase and

its time derivative specified at frame boundaries) can be met with at least a

cubic function, and the smoothness constraint can be quantified by minimizing

the integral of the function's squared second derivative. In other words, the

unwrapped phase which makes

linear is chosen.

Quatieri, 1986],

Using

the frame-to-frame phase function closest to

a continuous cubic phase function [McAulay and

a(t)
(3.23a)

with time derivative (frequency),

a'(t) 3A-t2 + 2B-t + C
(3.23b)

where t is a continuous time variable equal to zero at frame boundary [i], and

equal to T at frame boundary [i+1] (T = R-sample_rate). Four boundary

conditions on the phase function a can be identified:

* Note that if R were sufficiently small this would not be a problem.
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I: e(O) D phase measured at frame [ L]

II: e' (0) C frequency measured at frame [ i]

III: e(T) A'T3 + B·T2 + e'(O)'T + e(o) + 21TM
phase measured at frame [H1 ]

IV: e' (T) 3A'T2 + 2B·T + e'(o)
= frequency measured at frame [H1 ]

Thus, the parameters A, B, C, and D are readily calculated as a function of

the "unwrapping" parameter, M. Using McAulay and Quatieri's smoothness

criterion, M is chosen to minimize the expression [McAulay and Quatieri, 1986]

f(M)
T

J [e"(t;M)]2 dt
o (3.24 )

giving M as the integer closest to

q {[e(o) + el(O)'T - e(T)] + [e'(T) - e'(0)]'(T/2) }/(21T) .
(3.25 )

This provides the parameters A(M), B(M), C, and D for the chosen cubic

function. The synthesis procedure is implemented on a block-by-block basis as

the sum of the sinusoidal oscillators with linear amplitude interpolation and

cubic phase interpolation, viz.

J
x(m) E AMP(m,k)'cos(e(m,k))

k=track 1 (3.26 )

where m=0, ... R-1 is the sample time index between frames [i] and [i+1], J is
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the number of frequency tracks at frame [i], and where AMP and e are given by

AMP(m,k)= linear amplitude interpolation between matching peaks in
frames [i] and [i+l], over R samples, at the mt h sample
for the k t h frequency track

a(O,k) + m[a(T,k)-a(O,k)]/R

e(m,k)= cubic phase interpolation between matching peaks in
the framesh over R samples, at the mt h sample
for the k t frequency track

A(M)om 3 + B(M)om2 + Com + D

The MQ process can be extended to allow a wide range of signal

modifications. For example, the peak-matching and smooth-phase interpolation

methods are useful for splicing and editing sound segments without clicks or

pops. Also, the frequency tracks obtained from the analysis step can be

scaled for shifting pitch without changing the evolution of the sound with

respect to time. Similarly, time compression or expansion without pitch

change can easily be accomplished within the MQ model.

Analysis and synthesis results obtained using the modified MQ procedure

described in this section have been surprisingly good for a variety of sound

sources, considering the simplicity of the model and the arbitrary design of

the peak identification procedure and the cubic phase interpolation process.

In many informal experiments accompanying this research, the MQ process was

applied to isolated musical tones, speech, singing, and polyphonic music.

With careful listening, the synthesis output was found to be perceptually

distinguishable from the original input signal. In particular, the character

of noise-like components of the input signal was often noticeably altered in
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the synthetic sound, presumably due to an inadequate characterization of the

noisy material by the sum-of-sinusoids MQ model. On the other hand, because

of this attribute, the MQ procedure shows some potential for noise reduction

of recordings, particularly if a careful choice of thresholds is made for the

peak-picking step of the analysis. For the most part the synthesis was not

found to be "better" or "worse" than the original, only "different." This

informal result is encouraging, because it indicates that the MQ model retains

the essence of the original recording, and therefore, we are led to believe

that the information necessary for separating duets is present in the MQ

analysis data.

3.6 Tracking the Fundamental Frequencies in a Duet Signal

The voice separation strategies considered in the next section require

fundamental frequency estimates for each voice. This information could come

from several possible sources, such as an accurate musical score, an automatic

frequency tracking system, or a manual means of tabulation. Automatic methods

are of primary interest in this dissertation.

3.6.1 Common methods for pitch detection

In the literature, fundamental frequency tracking is often called pitch

detection or extraction. Dozens of papers and reports describing algorithms

for pitch detection have been published, particularly for applications in

speech analysis and processing. The list of methods includes the cepstrum

[Noll, 1966], autocorrelation [Sondhi, 1968], the period histogram and other

harmonic-based methods [Schroeder, 1968; Piszczalski and Galler, 1979], the
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"optimum comb" and average magnitude difference function (AMDF) [Moorer, 1974;

Ross et al., 1974], and methods based on linear prediction [Markel and Gray,

1976; Rabiner and Schafer, 1978]. These methods were developed primarily for

estimating the time-varying fundamental frequency of a single sound source.

The original plan for this investigation was to modify an existing single­

source pitch detection algorithm for use in the duet analysis problem.

However, evaluation of several potential algorithms revealed a set of inherent

problems.

For methods such as autocorrelation and the optimum comb, periodicities

in the input signal are identified by searching for a delay lag, TO' which

maximizes the integrated product (autocorrelation) or minimizes the integrated

absolute value of the difference (optimum comb and AMDF). The fundamental

frequency estimate is then f O= liTO. The search for the extremum is

problematic, because the autocorrelation function and AMDF are not unimodal:

many subextrema are present. These methods are particularly sensitive to

octave errors and other problems. In the case of speech, octave errors can

often be avoided by restricting the search span to a range less than one

octave, but musical signals generally span a larger frequency range.

Moreover, when two sources are present in the input signal, interactions

between the numerous pairs of partials cause additional difficulties. In

short, these methods were found to be impractical for the duet case.

The cepstrum is defined as the power spectrum of the logarithm of the

power spectrum [Noll, 1966]. Using a signal model in which a single periodic

source signal (excitation) is convolved with a system response function

(filter), the spectrum consists of the product of the source transform and the
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system transform. For pitch detection the cepstrum is used to isolate the

spectral ripple due to the partials of the source signal from the spectral

variations due to the system response function. Assuming that the source

signal appears as a "high-frequency" ripple in the power spectrum, while the

system transform contributes a "low-frequency" factor, the periodicity of the

input signal can be evaluated by separating the power spectrum according to

frequency. Logarithms of products can be expressed as sums of logarithms, so

the logarithm of the power spectrum is the sum of the logarithm of the source

signal power spectrum and the logarithm of the system function power spectrum.

Taking the power spectrum again (obtaining the cepstrum) reveals a low­

frequency component due to the system function, and a high-frequency peak

corresponding to the period of the source function. The source fundamental

frequency is the inverse of this period. Unfortunately, the convenient

separation of source and system fails when two signals are present, as in the

duet case. Here the power spectrum will contain the cross products between

the source components and the two system functions, making it impossible to

perform a clean separation and identification of the individual fundamentals.

Harmonic-based methods, such as the Schroeder histogram approach (1968),

provide a somewhat better platform for pitch detection of polyphonic signals.

The Schroeder method takes a list of harmonic frequencies and computes a

series of submultiples for each entry in the list. For example, a frequency

component at 100 Hz could be the fundamental of a 100 Hz signal, the second
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partial of a 50 Hz signal, the third partial of a 33.333 Hz signal, etc. The

list of submultiples is partitioned into a histogram, which counts the "votes"

for each possible fundamental frequency. The histogram bin containing the

most votes denotes the most probable fundamental.

The histogram method can suffer from the octave error problem, because

the histogram bin one octave below a given bin will be a valid fundamental for

all the components matching the higher frequency bin. As with the AMDF,

octave errors can be avoided if some specific information is known about the

frequency characteristics of the input signal, or if the search range can be

limited to less than one octave.

For the sum of two harmonic spectra the histogram approach can still be

effective. In fact, it was used in co-channel speech separation work

[Parsons, 1976; Stubbs and Summerfield, 1988]. The basic procedure is divided

into two passes: In the first pass, the largest histogram bin is identified

as the fundamental frequency of one of the voices. All harmonics matched by

the fundamental frequency from the first pass are removed from the list of

partials; then the histogram process is repeated for the remaining partials.

Note that this method assumes the partial frequencies can be determined

somehow from the composite signal without problems due to frequency

measurement inaccuracy and collisions between the partials of the two voices.

3.6.2 A new duet fundamental frequency tracking approach

The duet frequency tracking method developed for this dissertation

combines some of the concepts described in the last section. The approach is
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to choose a pair of fundamental frequencies which together minimize the

mismatch between the predicted partial frequencies (harmonics of the two

fundamentals) and the list of observed frequencies from the MQ analyzer. The

mismatch error is calculated as the sum of squared normalized differences

between each predicted partial frequency and the nearest measured partial

frequency, and between each measured partial frequency and the nearest

predicted partial frequency. This "two-way mismatch" calculation has two

advantages: 1) It favors frequency choices which correctly predict the

measured components, and 2) it does not predict components that are not found

in the set of measured partials. An example of the two-way mismatch

calculation for a particular pair of estimated frequencies is given in Figure

3.6.

The two-way mismatch calculation was devised to adjust the frequency

tracker to best represent the measured set of frequency tracks. If the

analysis data were noise free, we might only attempt to maximize the number of

correct predictions (the coverage) of the measured frequencies, then simply

choose the highest octave for a given level of coverage. However, any

spurious frequencies due to noise or interference between the duet voices

could cause the estimate to be very sensitive to small variations. The two-

way mismatch approach helps prevent such errors by including the "bad"

predictions as an unfavorable parameter in the error calculations.

In the two-way tracker implementation, the mismatch errors are weighted

according to some simple rules. Specifically, if a measured frequency track

has a relatively large amplitude, it is weighted more in the error calculation

than a small amplitude track. That is, the error penalty for missing a large
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Predicted Pair: 100 Hz, 150 Hz; Actual Pair: 98 Hz, 151 Hz.

PREDICTED MEASJRED PREDICTED
CCMFD'JENTS to COMPONENTS to CCMPCN:NTS

100 .. .. 100
150 .. .. 150
200 .. .. 200

300-- .. - • 300--

400 400
450 • 453 .. 450
500 .. 490 .. 500

600~
588_

600

• 686_
700 700
750 .. 755 .. 750

'To simulate real data, not all components are given.

Figure 3.6: The Two-way Mismatch Error Calculation.

amplitude track is greater than for missing a track with small amplitude. A

ranking of errors from WORST to BEST (largest error penalty to smallest error

penalty) is given by
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WORST (1) Missing a LARGE amplitude track by a LARGE frequency difference.

(2) Missing a SMALL amplitude track by a LARGE frequency difference.

(3) Missing a SMALL amplitude track by a SMALL frequency difference.

BEST (4) Missing a LARGE amplitude track by a SMALL frequency difference.

Defining f e as the absolute difference in frequency between a predicted

frequency, f p' and the nearest measured track, frequency f i and magnitude ai'

and defining maxmag as the magnitude of the largest peak in the analysis

frame, the error penalty is calculated using the following formulas:

Error from measured to predicted:

E1 = (1 + 3fe/f i) - O.2ai·(1 - 7fe/f i)/maxmag
(3.27a)

Error from predicted to measured:

(3.27b)

The weights in (3.27) were determined empirically using a set of sample input

signals and the error penalty criteria given previously. The total error for

a given fundamental frequency prediction is given by the sum of all the errors

E1,i and E2,p calculated for the analysis frame. Note that the global minimum

of the error function will not be, in general, the only local minimum. Thus,

a global search is necessary to locate the best frequency pair.
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The frequency tracking procedure is provided with two nonoverlapping

frequency ranges in which to concentrate its search. This information is

supplied by the user from prior knowledge of the expected input signal. The

search procedure first calculates the error value for a frequency pair with

the upper voice frequency fixed, and the lower voice frequency increasing from

the minimum of the low-frequency range to the maximum in semitone increments.

When a local minimum is detected using the semitone increments, the region of

the minimum is processed iteratively with a decreasing frequency increment to

refine the true estimate of the minimum location.

Once the entire low-frequency range is processed and the overall minimum

is obtained, the search procedure continues for a frequency pair with the

lower voice frequency set to the "best" frequency obtained in the first step,

and the upper voice frequency increasing in semitone steps across the high­

frequency range. The global minimum pair for the entire frame is saved.

The fundamental frequency pair estimation algorithm can be summarized as

follows:

(1) The non intersecting fundamental ranges of the lower and upper duet voices

are specified, [fminl,fmaxll and [fminh,fmaxh]'

(2) The initial frequency pair estimate is set to {fminl,(fminh+fmaxh)/2}.

(3) The total mismatch error (3.27) for the frequency pair is calculated, and

the low-frequency member of the pair is incremented by a semitone.

(4) The error evaluation process is repeated until the low-frequency member

of the pair reaches the range boundary. If a local minimum is detected,
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the error evaluation process repeats the search in the vicinity with a

reduced frequency increment to refine the estimate. The frequency pair

with minimum error identifies the preliminary estimate of the low­

frequency member.

(5) The evaluation process of (4) is repeated for the high-frequency range.

The resulting frequency pair is the initial estimate of the two

fundamental frequencies in the duet.

The entire algorithm is repeated by using the initial estimate of the

frequency pair just obtained as a starting point. This repetition helps

insure that the true global minimum has been identified without resorting to

testing every possible combination of frequency pairs.

The mismatch error calculation is performed as a global search only

several times per second of the input signal. On the frames between the

global search frames, the search is restricted to a semitone range (±2.5% of

each fundamental frequency). If the global search turns up a better pair of

frequencies outside the semi tone range, the tracking process checks the

intervening frames to isolate the frame at which the change occurred. By

choosing the period between global searches to be less than an arbitrary

minimum note duration, no frequency transitions will be missed. This approach

reduces the amount of calculation necessary to track the pair of frequencies,

under the assumption that the frequency pair will often remain roughly

constant for many analysis frames during each musical note.
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A nonlinear smoothing process is applied to each of the two outputs of

the duet frequency tracker. The smoothing was found to be useful for reducing

occasional single-frame errors due to signal noise.

*smoother was found to be adequate for this purpose.

A five-point median

The two-way tracking algorithm requires substantial computation but

provides good results. The performance tends to degrade as one voice of the

duet becomes lower in amplitude than the other. In this case the tracker has

little difficulty following the louder voice but has increasing trouble with

the softer voice. A variety of related issues will be discussed in the next

chapter.

3.7 The Use of the MQ Procedure in the Duet Separation Task

At first glance, the MQ model appears to be an ideal representation for

the duet separation problem because the sinusoidal components of each voice

should appear as independent tracks in the MQ analysis data. According to

this reasoning, once the two fundamentals are determined by simply choosing

the proper subset of tracks, each voice could be resynthesized separately.

Unfortunately, this naive approach cannot be applied directly in most cases

for reasons discussed in this section.

* The median operation sorts a set of Q (usually odd) data points from
smallest to largest, then returns the middle point:
{2,lO,1}7 median=2; {1,11,9,2,4}7 median=4.
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MQ frequency resolution and spectral collisions

The spectral resolution of the MQ procedure defines a limit on the number

of frequency tracks present in the MQ analysis data. In this context,

"resolution" measures how small the frequency difference between two equal-

amplitude sinusoidal components may be before they appear to be a single peak

in the magnitude spectrum. The resolution is determined primarily by the

length, N, of each segment used in the DFT and the type of window function

which is applied to the data. The fundamental time-bandwidth product, based

on the uncertainty principle, places a constraint on the simultaneous

observation of features in the time and frequency domains. Short observation

intervals (small N) provide more time resolution than long intervals (large

N), at the expense of less frequency resolution, and vice versa. In other

words, time resolution and frequency resolution are inversely related. An

expression for this relationship is

(3.28)

where TO is the duration of the input data segment, and QO is the spectral

bandwidth of the segment's Fourier transform. * The inequality of (3.28)

indicates that a windowed signal segment time-limited to TO seconds always has

a bandwidth of at least 1/2TO. The resolution problem is particularly

significant when two components of unequal magnitude are closely spaced in

* The numerical relationship of (3.28) may vary depending on how bandwidth
is defined in a given situation.
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frequency: The larger component may obscure the presence of the smaller. The

ability of the analyzer to resolve closely spaced spectral components is an

important consideration for the MQ process, since only the peaks in the

magnitude spectrum are retained after the initial processing.

Assuming that we know the fundamental frequencies of both voices of a

musical duet, the harmonic frequencies identify the spectral location of each

partial. Consider the frequency pair {lOa, l50} Hz. The harmonics of the

lower voice are (100, 200, 300,400, 500, ), while the upper voice has

partial frequencies (150, 300,450, 600, 750, ). Note that the two voices

share harmonics at (300, 600, 900, ... ). Moreover, because of the time-

bandwidth issues just mentioned, overlaps may occur even if the spectral

components are not exactly coincidental. The occurrence of harmonic sharing,

or collision of spectral components, prevents a simple segregation of the

frequency tracks into those belonging to one voice and those belonging to the

other. More precisely, if the frequency separation of two components is

smaller than the resolution limit of the analysis window transform used in the

MQ process, the two components combine with each other and become a single

track. Therefore, because of partial frequency collisions, most duets cannot

be separated £y simple segregation of the frequency tracks into groups

belonging to one voice or the other.

In order to resolve spectral collisions between the partials of different

voices we must ascertain the most probable contribution of each voice to the

composite information observed in the short-time spectrum. Given that the two

fundamental frequencies are known, it is possible to identify conflicting

partials by comparing the predicted harmonic series of the two voices.
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Assuming we have good estimates of the two fundamental frequencies, three

approaches to this task may be considered:

(1) For predicted partials closer than the spectral bandwidth of the analysis

window a set of linear equations can be specified and solved for the

contribution of each windowed sinusoid to the observed complex spectrum

in the vicinity of the conflict.

(2) For two closely spaced partials the resulting amplitude modulation

(beats) and frequency modulation functions may be used to calculate the

amplitudes of the colliding partials--assuming the partials' amplitudes

and frequencies remain relatively constant for a period of time

sufficient to estimate the various parameters involved.

(3) With an accurate signal model for each voice, collisions of partials can

be handled by synthesizing artificial amplitude/frequency tracks to

replace the corrupted partials. For brief collisions, or when none of

the other approaches is applicable, it may be necessary to resort to

interpolation of the missing data from uncollided partial data in the

same frame or in adjacent frames.

For this investigation the approach is: Compare the predicted harmonic

series of the two voices to identify potential collisions, segregate all

uncollided frequency tracks, and then apply one of the three methods listed

above to reconstruct the colliding components. The criteria for choosing the

appropriate strategy will be considered later in this ,chapter.
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The linear equations method for collision repair relies on several

concepts and assumptions. First, because the time-domain window function,

w(m), is real, has even symmetry, and is noncausal, its DFT is real-only.

Second, if the windowed input signal contains only components with constant

frequency during the window interval, its spectrum will contain only copies of

the window transform centered at the component frequencies. This is because

multiplication of the constant frequency component by the window function is

equivalent to convolving the two Fourier transforms. Third, if the window

function is chosen so that its spectral bandwidth is less than both of the two

fundamental frequencies, the window transform passband will cover at most two

partials of the composite signal (no more than one from each of the duet

voices). The significance of these assumptions will be apparent shortly.

A duet input signal, x(n), can be expressed as the sum of the individual

voice signals, xl(n) and x2(n), where

(3.29a)

and using a sinusoidal model,

J
1

~ Q1,k(n).cos(w1,k(n).n + ~l,k(n))

k=l

(3.29b)
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where 0. ,k' w. ,k' and ~.,k are the time-varying amplitude, frequency (possibly

inharmonic), and phase of each component, and J l and J 2 are the number of

components in signals xl and x2' respectively. The discrete-time Fourier

transform of the windowed input signal x(n-sR)w(n) can be expressed as

v 1
.L

1 + ~ 0

r \ Z
.c -' - 1 , k..... ' /

2 cr1 ' • ',,; ( :..; -..J1 . ) e
k=l .J..., K K

1 - j:.{l k
+

2 °1 , k • TN ( r....'+W 1 , k) e '

J
2

1 +jrp
+ Z

°2,k ·W(w-w ) 2 k
2 e '

k=l 2,k

1 - j'P2 k
+

2 Q 2 . k ,W(w+w ) e '. 2,k

(3.30 )

with phase assumed relative to the sliding time window, and the Fourier

transform of wen) denoted by W(w). Equation (3.30) shows that the Fourier

transform of the composite signal xI(n) + x2(n) contains shifted versions of

the window transform, W(w), scaled by complex factors. Denoting the

discrete-time Fourier transforms xl <=) f l (w) and x2 <=) f
2

(w) , the composite

signal spectrum is few) = f l (w) + f 2 ( w) . We know only the composite spectrum,

f, and we need to estimate fl and f Z in order to separate the two voices.

At a given frequency, the Fourier transform few) contains contributions

from the 2(JI+JZ) shifted and scaled window transforms. If we assume that the

only significant contributions to few) at a given frequency are due to the

nearest two shifted window transforms, a simple set of linear equations may be

used to solve for the overlapped parameters. Consider two partials having

frequencies WI and w2 separated by a small frequency difference w
1

- w
2

. With
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the spectrum of the combined signals denoted by r(w) and given a normalized

window transform w(w) such that W(O)=l, we have

f(w
1)

- f1(w1) + W(w1-w2)·r(w2)

f(w
2)

- f
2(w2) + W(w1-w2)·r(w1) •

(3.31)

From these two equations we can solve for the unknown complex quantities

The equations in (3.31) are complex, but the real and

imaginary parts may be separately computed. Thus, we can obtain estimates of

the amplitude and phase of any pair of partials with frequency spacing less

than the resolution bandwidth of the window transform. A schematic

representation of the separation process is depicted in Figure 3.7.

It should be noted that a similar linear equation method (for co-channel

speech) was proposed independently by Danisewicz and Quatieri (1988). Their

method includes the effects of all shifted window transforms, not just the

nearest two, as in this investigation. Danisewicz and Quatieri also show an

interpretation of the frequency-domain linear equation solution in terms of an

equivalent time-domain least-squares viewpoint.

Unfortunately, when the frequency difference between two partials

approaches zero (near-perfect coincidence), the set of equations in (3.31)

becomes singular, and no unique solution can be found. One of the alternate

separation strategies must be applied when this occurs.
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a .
k

a . W(w - co )
k + 1 k + 1

Figure 3.7: Overlap Response for Two Closely Spaced Partials (Real Part).

3.7.3 Separation strategy II: analysis of beating components

When a spectral collision occurs, several characteristic effects may be

observed in the MQ analysis output.

cosinusoids are present:

Consider the case in which two
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- Re (
- jw t

a
e

- jw t
d

o [A 0 e
1

- Re {
- jw t

a
e o [(A

1+A2)ocos(wdt)
- j(A

1-A2)osin(wd
t ) ] i ,

(3.33 )

which may be expressed in polar form as

- j w t r-r--r-r-r;__----;;.-----------,

- Re {e a 0 [ I (A 2 + A 2 + 2A A ( 2 )
1 2 1 2c OS wdt

-j arctan( tan(wdt)o(AI-A2)/(Al+A2) ) ]
• e

o cos{ w t +
a

Equation (3.34) shows that the sum of cosinusoids in Equation (3.32) may be

expressed as an amplitude and phase modulated cosine. For example, in the

special case where Al=A 2 and wd~w the composite signal takes the form of a
a'

balanced AM signal, 100% modulated, with carrier frequency w. This effect
a

is commonly described as beating, where the beat rate is equal to the

difference between the component frequencies, Iw1 - w21. Several examples are

shown in Figure 3.8.
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The instantaneous frequency of the signal in (3.34) can be defined as the

time derivative of the cosine phase,

w( t )
d

<it
wat + arctan[ tan(wdt) ° (A1-A2)/(A1+A2 ) ] }

(3.35 )

*which can be expressed in the form

wet) = w
a +

(A 2
1

+ A 2
2

2
- A ) ow

2 d

(3.36 )

For A1=AZ the second term becomes zero. For A1~AZ the second term

remains near zero, except when the cosine in the denominator is close to -1;

then the denominator becomes very small, giving a large positive pulse if

A1>AZ or a large negative pulse if A1<AZ' The frequency pulse occurs when the

amplitude function is nearly zero, so the perceptual importance of this effect

is minimal. For A1»AZ the second term oscillates about the value wd' with

the oscillations due to the cosine term in the denominator becoming less

significant as the ratio A1/AZ grows. For A1«AZ the behavior is similar, but

the second term approaches -w
d

as the ratio Az/A1 increases. Several examples

corresponding to the waveforms of Figure 3.8 are shown in Figure 3.9.

*Recall the formulas
(d/dt) arctan u = [ 1/(1+uZ) ] du/dt

and
(d/dt) tan u = [ sec2 u ] du/dt
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As discussed above, the presence of two partials with frequency spacing

less than the resolution bandwidth of the analysis window transform results in

the composite signal of (3.34). Assuming that the colliding partials remain

essentially constant for several cycles of the Iwl-w21 beat frequency, the

amplitude values A1 and A2 can be determined using the amplitude and frequency

beating functions: The maximum of the amplitude beat is A1+A2, the minimum is

IA1-A21, and if the amplitude minimum occurs when the frequency is a minimum,

the lower frequency partial's amplitude is max(Al,A2), while if the amplitude

maximum occurs when the frequency is a minimum, the lower frequency partial's

For example, consider the pair of partials with known frequencies

{ 1000, 1005 } Hz and unknown amplitudes. This gives w -Iw -w 1/2d 1 2 = 2.5 Hz,

1002.5 Hz, for use in Equations (3.34) and (3.36). If we

measure a maximum amplitude of 250 and a minimum amplitude of 50 due to

beating, we can solve for the two amplitudes: namely, (250 + 50)/2 = 150, and

(250 - 50)/2 = 100. However, we can not tell which amplitude goes with which

frequency from the amplitude beating alone. If the minimum of the amplitude

beat coincides with the minimum of the instantaneous frequency, we know that

the lower partial (1000 Hz) has the larger amplitude (150), and the higher

partial (1005 Hz) has the smaller amplitude (100).

Determination of the phase of the colliding partials using beating

analysis is not possible, because only the relative phase between the two

components is known, not the absolute phase relative to the time origin.

Fortunately, the phase value for a partial on a given frame can often be

estimated by adding the phase from the previously processed frame to its
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frequency value multiplied by the spacing between frames. In the current

implementation this process of phase accumulation seldom causes audible

degradation.

Unfortunately, successful use of component beating functions to solve the

partial collision problem requires that the duet voices contain no significant

amplitude and frequency fluctuations of their own. Some instrumental and

vocal timbres obey this restriction, but most, in general, do not. Thus, some

means for resolving partial collisions is necessary when methods I and II

fail.

3.7.4 Separation strategy III: signal models, interpolation, or templates

When partial collisions cannot be resolved by either of the separation

strategies described above, the interfering partials must be reconstructed by

some other means. Specifically, if a flexible model can be determined for

each voice of the duet, the missing partials can be generated artificially.

Models of musical sounds can range from differential equation

specifications for a musical instrument based on physical principles to

empirically-derived parameters based on time-variant analysis. A primary

difficulty with modeling musical signals lies in matching the tonal quality--

the ~imbre--of a particular instrument under conditions of deliberate and

accidental performance variations typical of most music. For example, a

simple model (such as an FM model) able to produce a believable synthetic

trumpet sound may not be amenable for predicting appropriate behavior of a

trumpet for every possible combination of pitch, embouchure, vibrato, etc.,
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nor may it be able to choose the "correct" performance mode for a given

musical context. Certainly, a single, static spectrum is insufficient to

capture the essence of a complex instrument. On the other hand, an empirical

model would require a large data base of salient parameters, including rules

for their appropriate application, in order to repair corrupted partials in a

duet recording.

However, in the case where only a small number of partials of each voice

collide, we may assume that the parameters of the interfering partials can be

estimated (interpolated) from the remaining uncorrupted partials. As an

example, consider voices with fundamental frequencies 100 Hz and 175 Hz:

voice 1 partials:
voice 2 partials:

100 200 300 400 500 600 700 800 900
175 350 525 700 875

The seventh partial of voice 1 and the fourth partial of voice 2 coincide at

700 Hz, while most of the other partials are spaced by at least 25 Hz. On a

given analysis frame the amplitude of the 700 Hz partial could be estimated

from the remaining uncorrupted partials in the short-time spectrum. Several

possible situations, leading to different solutions, must be considered.

If the harmonic spacing (i.e., the fundamental frequency) of a voice is

known to be small compared with the bandwidth of any features in the

instrument's spectral envelope, a curve connecting the spectral peaks

corresponding to that voice provides an estimate of the spectral envelope.

For a low-frequency voice with smooth spectral resonances a simple linear

interpolation of adjacent partials (of that voice) can yield a reasonable
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estimate for a corrupted partial, as shown in Figure 3.10 for the spectrum of

a male singing voice. Alternatively, a priori knowledge of the gross spectral

character of the vcicc, e.g., a "smooth" spectral envelope, could be used for

COLLISION

1
0­
E
«

Partial amplitude
estimated using
linear interpolation

4 ff 2 f 3 f Sf \~ 7f

Frequency

8 f 9 f

Figure 3.10: Linear Interpolation of Spectrum to Resolve a Collision.
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reconstruction. A solution of this type may be extended to a higher-order,

curve-fitting interpolation procedure based on several surrounding partials,

as shown in Figure 3.11.

Partial amplitude
estimated by
cubic interpolation

Q.

E
<

f 2 f 3 f 4 f

COLLISION

1

7f 8 f 9 f

Frequency

Figure 3.11: Cubic Interpolation of Spectrum to Resolve a Collision.
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Simple interpolation of the spectrum may not be reasonable if the spacing

of partials is large compared to the features of an assumed spectral envelope.

In this situation the spectral envelope is undersampled by the spacing of the

partials. This is primarily a problem for voices with high fundamental

frequencies and/or sounds with many narrow, overlapping resonances, such as

sounds produced by the violin. In this case weighted spectral templates may

be used to assist in estimating the amplitude of a collided partial. The

spectral templates can be precalculated from spectral envelope data for

particular instruments for a wide range of amplitudes, fundamental

frequencies, durations, etc. Note that the remainder of this section is

somewhat speculative because, at present, only simple templates for soprano

singers have been developed for this project.

A spectral template is a table giving relative amplitude as a function of

frequency. For a particular fundamental frequency the template can be used to

look up the estimated relative amplitude weight, Ti, for each partial number,

i, where partial number i=k is corrupted by a collision. The measured

amplitudes, Qi' of the uncorrupted partials are obtained from the short-time

spectrum. To minimize the total squared error between the Qi's and the

corresponding scaled template values, the GoTi's, the total squared error is

computed,

Etotal =
J
~

i#k
i=l

(Q. - GoTo)2
l l

(3.37)

Taking the derivative with respect to the amplitude scaling parameter, G, and
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setting equal to zero,

J
0 ~ 2T1'(G'Ti-Qi)

i#k
i=1

or

J J
G { ~ QiTi } / { ~ T. 2 } ,

1
i#k i#k
i=1 i=1 (3.38)

The estimated amplitude of the corrupted partial, k, is then given by

(3.39)

An example of the template process is shown in Figure 3.12.

The application of templates to replace a partial damaged by a collision

follows a few basic steps. For a given analysis frame, a spectral template is

chosen from a precalculated set according to the local behavior of the signal.

The scaling of the selected template is matched to the uncorrupted partials in

a least-squares sense. Then the scale is used to estimate the corrupted

partials, as described above.

3.7.5 Further considerations

Iry the current implementation the choice of the appropriate separation

strategy for a pair of colliding partials is as follows:
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Figure 3.12: The Use of Spectral Templates to Resolve a Collision.
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1) The two fundamental frequencies of the duet (obtained using the two-way

mismatch procedure) are used to generate the harmonic series of the two

voices. The minimum spacing between adjacent partials is calculated.

2) If a partial is at least 50 Hz away from every other partial, the

*component is considered "clean" and no collision repair occurs.

3) If two partials are separated by less than 50 Hz but more than 25 Hz, the

linear equations solution (strategy I) is applied.

4) If two partials are separated by less than 25 Hz, the beating analysis

solution (strategy II) is attempted. However, if the collision is less

than two or three beat periods ( < 3/lw1 - w
21 ), estimates of the beating

parameters are not reliable. In this case the spectral interpolation or

template solutions (strategy III) are applied.

In the case where the fundamental frequency of one of the voices is an

integer multiple (e.g., an octave) of the other, all partials of the higher

voice coincide with partials of the lower voice. Extraction of the upper

voice may become very difficult when this occurs. The lower voice, however,

will have at least some of its partials uncorrupted because the partials of

the upper voice will be spaced by at least twice the fundamental frequency of

the lower voice. In this situation, an attempt can be made to reconstruct the

lower voice spectrum using the separation strategies considered above. The

upper voice may be extractable if the spectral envelope of the lower voice's

* This is for a Kaiser window with 6 dB bandwidth of 40 Hz. The criterion
would be changed appropriately if the window size is changed.
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partials happens to be confined to a frequency range below the partials of the

upper voice so that no (or few) collisions occur.

A final consideration is how the separation strategies are applied.

Because the duet voices are independent, a note from one voice may start or

stop while a note from the other voice is sustained. Thus, the spectral

collision situation may change suddenly as the voices enter and exit. If we

simply switch the appropriate separation strategy from one method to another

as the spectral collisions vary, audible discontinuities may be heard in the

output signal due to estimation variations between the separation methods.

This problem is solved by additional continuity comparisons between the

results of different separation strategies, particularly when a change occurs

in the collision status.
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CHAPTER 4

RESULTS AND DISCUSSION

Unlike research work involving speech processing, no standard method is

available to measure the "intelligibility" of musical signals. In the duet

separation problem, the subjective "quality" of the output depends upon the

intended application. For example, an attempt to restore an old 78 rpm record

for re-release as a compact disc would probably demand a higher standard of

sound quality than an attempt to isolate a particular voice simply to aid

manual transcription into standard musical notation. Collection of meaningful

psychoacoustic data on aspects of musical fidelity is quite difficult because

of the multi-dimensional perceptual issues involved.*

some method is necessary to evaluate the performance of music processing

systems such as the one described in this dissertation.

We also must attempt to balance several external influences: At one

extreme, a desire for "perfect" results may tempt us into solving problems

with a specific input example in mind, resorting to quick-fixes and special-

case program code. The result is often a program that works perfectly for a

certain example case, but fails for many ostensibly similar inputs. The

opposite extreme occurs when development proceeds at a highly theoretical

level, leaving the implementation details as an afterthought. In this case,

the theories may be disrupted by the unforeseen vagaries of real input

signals, such as noise, level variations, etc. Thus, we must choose a

*One need only consider the colorful arguments among users of consumer
audio gear regarding personal opinions of sound quality and fidelity.
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sufficient quantity and variety of examples in order to develop useful

performance specifications for the separation procedure.

4.1 Testing and Evaluation Outline

The evaluation approach for this project involves both acoustically­

generated ("real") signals obtained from musical recordings and artificial

signals generated by software. The real signals provide examples of practical

problems and solutions, while the synthetic signals define extraction

performance limits using known signal parameters.

Several examples are presented in this section to demonstrate the

performance of the fundamental frequency tracking and duet separation system:

ARTIFICIAL TEST SIGNALS

1) The test duet (Figure 4.1) contains one voice with a constant fundamental

frequency of 800 Hz for a duration of one second and another voice with a

linear fundamental frequency ramp from 1200 Hz to 880 Hz over a duration

of one second. The constant frequency voice contains six partials with

equal amplitudes, while the changing frequency voice contains six

partials with amplitude weightings {I, 0.5, 0.33, 0.25, 0.2 and 0.266}.

Both voices have equal peak waveform amplitudes. The signal was chosen

to evaluate the collision correction ability of the separation process

and the behavior of the frequency tracking procedure for piecewise

constant and rapidly varying fundamental frequency pairs.



Voice 1: Fundamental frequency: 800 Hz
6 equal amplitude partials

Voice 2: Fundamental frequency: 1200 to 880 Hz
6 partials with amplitude weighting:

1, 0.5, 0.33, 0.25, 0.2, 0.266

Voice 1 and voice 2 have the same peak amplitudes.
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Figure 4.1: Artificial Duet Test Signal 01: Synthesis Frequencies.
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2) This example contains two voices with constant frequencies a minor third

apart (pitches C5 and DH5; i.e., fO~ 523 Hz and fl~ 622 Hz) both

generated using phase modulation (see Figllre 4.2). This is desirable

because phase modulation tones contain partials with distinctive,

independent amplitude envelopes. The modulation index for the lower and

upper voices are 4 and 5, respectively. Both voices are one second in

duration and have equal peak amplitudes. For this combination of

pitches, the sixth partial of the lower voice and the fifth partial of

the upper voice are close enough in frequency to cause beating (see

Figure 4.9).

3) This example is a simple duet containing a phase modulation voice and a

voice with the same amplitude for all its partials. Note boundaries of

the two voices occur at different times to facilitate evaluation of the

transition capability of the frequency tracking and separation procedures

and their behavior for unconnected (staccato) notes (see Figure 4.3).

4) Two fixed-waveform voices with time-varying amplitude envelopes were

chosen to determine the behavior of the entire system in the presence of

a level mismatch between voices (see Figure 4.4).

ACOUSTIC TEST SIGNALS

5) The first "real" signal is actually a contrived duet generated by

additive mixing of two monophonic recordings of solo female singers. The

two original recordings (prior to mixing) are available for comparison

with the output of the separation procedure (see Figure 4.5). The first

voice in example 5 sings an arpeggio (with vibrato), while the other
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Voice 1: Fundamental frequency: 523 Hz
Phase modulation synthesis,

carrier/modulator ratio = 1:1, index 4

Voice 2: Fundamental frequency: 622 Hz
Phase modulation synthesis,

carrier/modulator ratio = 1: 1, index = 5

Voice 1 and voice 2 have the same peak amplitudes.
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Figure 4.2: Artificial Duet Test Signal n.: Synthesis Frequencies.
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Voice 1:

....
:

(a)

Voice 1: Phase modulation synthesis,
carrier/modulator ratio = 1:1, index = 4

Peak amplitude = 15000

Voice 2: 7 equal amplitude partials
Peak amplitude = 10000

(b)
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Figure 4.3: Artificial Duet Test Signal H3:
(a) Musical Score
(b) Frequency Specification



Voice 1: Fundamental frequency: 523 Hz
Phase modulation synthesis,
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voice sings a constant pitch without vibrato. The frequency ranges of

the two voices overlap, which violates one of the original assumptions

about allowable duets. However, the range overlap occurs only for the

first note of the upper voice, which is also a solo note. Thus, this

test duet is an example requiring manual intervention: The duet

frequency tracking process is not started until after the first solo note

is over.

6) This example is a short segment of Duo Hl for Clarinet and Bassoon by

Beethoven, obtained from an analog record album. The example was chosen

to test the system in the presence of typical reverberation, surface

noise and other distortion (see Figure 4.6).

7) A tuba and trumpet duet was chosen to check the tracking and separation

process for voices widely separated in frequency. The test segment comes

from an analog recording of Sonatina for Trumpet and Tuba by Anthony

Iannaccone and contains background noise and reverberation (see Figure

4.7).

8) Test duet 8 uses the same musical score as example 7, except the

recording was made using live performers in a nonreverberant room. This

example is used to compare the system performance for a "clean" signal

with its performance for the signal of example 7.

4.2 Evaluation of Duet Fundamental Freguency Tracking

The first fundamental research question posed in the introduction was
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How may we automatically obtain accurate estimates of the time-variant
fundamental frequency of each voice from a digital recording
of a duet?

In Chapter 3 the two-way mismatch (TWM) duet fundamental frequency-tracking

algorithm was proposed as a possible answer to this question. To evaluate

this method, the frequency-tracking algorithm was applied to the artificially

prepared duets. The qualitative performance of the TWM frequency tracker for

the real duet examples is considered later in this chapter.

The MQ analysis and TWM frequency-tracking results for artificial example

1 are shown in Figure 4.8. The partials of the two voices are clearly visible

in the MQ output, and the frequency-tracking algorithm has no difficulty

following the gross characteristics of the two fundamental frequencies.

However, a close examination of the fundamental frequency trace for the upper

voice reveals occasional short-term errors. The frequency errors (all less

than 1%) occur at points where partial collisions take place, disrupting the

harmonic series of the voice. The two-way mismatch algorithm has some

immunity to this problem due to its "best match" criterion, but the amplitude

and frequency fluctuations inherent during a partial collision still cause

some uncertainty.

Figure 4.9 shows the MQ analysis and two-way mismatch frequency-tracking

results for artificial example 2. In this example the two phase modulation

voices are nearly separable by track segregation alone. Therefore, the TWM

frequency tracker results are nearly perfect.

Figure 4.10 shows the MQ analysis and two-way mismatch frequency-tracking

results for artificial example 3. The TWM frequency-tracking results match
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the true values very well during portions of the duet where both voices are

present, but the tracker output fluctuates when only one voice is present.

This problem is due to an assumption in the TWM algorithm that two sets of

harmonic peaks are present in every frame of the MQ analysis data. For solo

passages (or between staccato notes) only one set of harmonic peaks are found

in the MQ output, so some means is necessary to choose between the normal duet

tracking mode and a solo tracking mode.

An attempt to solve the duet/solo problem is included in a more recent

implementation of the TWM process. The tracker compares the two-way mismatch

error calculated for the "bes t " pair of fundamental frequencies with the error

calculated for the "best" single fundamental frequency. In other words, the

mismatch error calculation is performed twice on each frame, first searching

for the minimum error for a pair of frequencies, then searching for the

minimum error for an individual frequency. The method yielding the best match

(smallest error) is considered the appropriate interpretation of the contents

of the analysis frame.

Unfortunately, this solution essentially doubles the search calculation

required for each frame. Also, if the fundamental of the upper voice

coincides with a harmonic of the lower voice, the resulting series of peaks

could look like a solo voice. A better solution would be to identify the

current voicing in a less brute-force manner, but the current approach has

been satisfactory for the purposes of this project.

A difference in level between voices of a duet has several implications

for the frequency tracking process. For example, if the level mismatch for a
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given pair of nearby partials exceeds 20 dB or so, the weaker partial may be

completely obscured by the stronger partial. The frequency tracking process

relies on the partial frequency estimates from the MQ analysis, so if many

partials of the weaker voice are obscured, the fundamental frequency estimate

for that voice may be inaccurate. The MQ analysis and frequency tracking

results for the final artificial example, number 4, are shown in Figure 4.11.

For this example the TWM process is able to find the frequencies of the two

voices, but some fluctuation of the measured frequencies is evident, due to

the amplitude mismatch between the two voices. This is despite the fact that

the original signal contains only voices with constant frequencies.

The duet of example 5 is the final objective test of the TWM frequency

tracker. This duet was generated from two known solo voices, so the

fundamental frequency results using the TWM technique for the individual

voices (Figure 4.12) can be compared with the result obtained by the duet

frequency tracker (Figure 4.13). The TWM process exhibits some difficulty in

tracking the two fundamental frequencies for the first few notes of this

contrived duet. The principal difficulty is due to the vibrato of the upper

voice when the two fundamental frequencies are close together. This is

because vibrato causes the partials of the upper voice to sweep back and forth

in frequency, producing a complex series of partial collisions which disturb

the peak matching process. Unfortunately, no simple solution to this problem

is available using the TWM approach. We must rely on the averaging property

of the mismatch technique to reduce the sensitivity of the procedure.

In summary, the following conclusions can be drawn from this section on

the performance of the two-way mismatch fundamental frequency tracker:
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1) The TWM procedure performs very well for duet signals with either

constant or slowly changing voice frequencies and similar peak

amplitudes.

2) The tracking process has difficulty interpreting the input signal when

staccato notes occur in one or both voices or during other transitions

between the duet and solo paradigms.

3) The frequency tracking process may be impaired if the list of frequencies

supplied by the MQ analyzer is seriously corrupted because of a level

mismatch between the two voices or some other degradation.

4.3 Evaluation of Voice Separation with Known Fundamental Frequencies

The second fundamental question posed in the Introduction was

Given time-varying fundamental
duet, how may we identify
(overtones) of each voice?

frequency estimates of each voice in a
and separate the interfering partials

The analysis procedure proposed in Chapter 3 is first evaluated using the same

artificial duets used to evaluate the TWM pitch tracking procedure. The known

fundamental frequencies are supplied to the separation procedure in order to

determine its best-case performance, i , e. , how well the separation task

performs with "perfect" a priori estimates of the fundamental frequencies.

The first artificial test example contains one voice with a constant 800

Hz fundamental, and the other voice with a linear fundamental frequency

transition from 1200 Hz to 880 Hz. The separation results using this known

frequency information are shown in Figure 4.14. Note that even with perfectly



98

L
.I.
n....
T'

(a)

Hz

1""
".0 T l IT\ e l n Seconds

-----====
=-

IIlXlO T
I
J

I
I,

L
.I.
n
•..
T' I
f~t :
t
~•

en ~

C:!:I ",

In ~

H"
z "I...,

1.3.0 l n Seconds

Figure 4.14: Separation Spectra of Example n1
Using a priori Frequency Data.
(a) voice 1 (b) voice 2



99

specified fundamental frequencies, the separation process is not perfect. The

amplitude discrepancy between the extracted voices of Figure 4.14 and the

constant partial amplitudes of the original voices can be traced to one of the

underlying assumptions of the separation process: namely, that the peaks in

the short-time spectrum are simply shifted and scaled copies of the Fourier

transform of the analysis window function. This assumption is exactly correct

only if the sinusoidal components comprising the signal do not change their

frequency or amplitude during the interval covered Qy the analysis window.

For test example 1 the fundamental frequency changes 1200 - 880 = 320 Hz in

one second, or 0.32 Hz/msec. Further, the frequency sweep rate for the second

partial is 0.64 Hz/msec, for the third partial, 0.96 Hz/msec, etc. The MQ

analysis window used in this example is 25.6 msec in duration, yielding a

frequency change during the window of 8.192 Hz for the fundamental, 16.384 Hz

for the second partial, 24.576 Hz for the third partial, etc. Thus, the

assumption of constant frequencies during the window duration is clearly

violated in this case. Unless we were to resort to the impractical approach

of explicitly predicting the short-time spectrum for every swept-frequency

component identified in every input frame, the linear equation solution

strategy explained in Chapter 3 is not a truly valid approach for this

example.

The main effect of rapidly changing frequencies observed in the short­

time spectrum is convolutional broadening of the peak corresponding to the
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changing frequency component. The increased frequency extent of the spectral

peak increases the likelihood of a collision between the broadened peak and

*any adjacent components, requiring extra care in the separation process.

Unlike the changing frequencies of example 1, test example 2 contains two

voices with constant frequencies. As mentioned in the last section, many of

the partials in example 2 are spaced adequately to avoid any collision

problems. However, partial number six (3139 Hz) of the lower voice and

partial number five (3111 Hz) of the upper voice are close enough to produce

beating. The separation results are shown in Figure 4.15, and the collision

repair is depicted in more detail in Figure 4.16. Note that Figure 4.16

includes the partials' amplitude-vs.-time and frequency-vs.-time projections

for clarity. In general, the recovered envelopes are entirely appropriate for

the phase modulation process used. However those which were subject to

collision suffer from some amplitude and frequency perturbations.

For an arbitrary duet signal, the fundamental frequency of the upper

voice may be an integer multiple of the fundamental of the lower voice. This

means that every partial of the upper voice is subject to a collision with a

lower voice partial. However, the situation may be salvageable if the

spectrum of the lower voice happens to contain little energy in the region of

the upper voice partials. In this quasi-bandlimited case, the separation

strategies of Chapter 3 may still be applicable. Test duet 3, for example,

contains several notes where the voices are in octave alignment, but with very

*It should be noted that the underlying issue here is the fundamental
time-bandwidth limitation of short-time analysis techniques (Chapter 3).
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little spectral overlap. The separation results for example 3 are shown in

Figure 4.17.

The separation output in the case of an amplitude mismatch between the

duet voices is shown in Figure 4.18 for test example 4. Although the

separation process has some difficulty interpreting the changing amplitude

relationship between the two voices, the estimates of the colliding partials

are never grossly in error.

For the duet of example 5 the separation process must deal with the

vibrato present in the upper voice. A major difficulty in handling signals

containing vibrato is in the transition between different separation

strategies as collisions begin and end during the vibrato cycle. For example,

consider a partial with a nominal frequency of 300 Hz and 5% frequency vibrato

(300 ±15 Hz) accompanied by another partial with a constant 350 Hz fundamental

frequency. If a collision is defined to occur whenever the difference between

two frequency components is less than 40 Hz, the two partials in this example

will collide only during the portion of each vibrato cycle in which the

frequency of the lower partial exceeds 310 Hz. Any discontinuity at the

collision boundary, which might even go unnoticed if it were a one-time

occurrence, can become very obvious when it repeats synchronously with the

vibrato waveform. Some of these effects can be identified (and heard) as

small, discontinuous features in the output data (see Figure 4.19).

To summarize this section:

1) The separation process is most effective for portions of the duet where

the fundamental frequencies of both voices remain constant.
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2) The separation task may not be perfect, even in the "best case" situation

of a priori knowledge of the duet fundamental frequencies. The

discrepancies are primarily due to the time-bandwidth limitations of the

short-time Fourier transform used in the analysis.

3) Reliable separation requires the frequency estimates for each partial to

be within a few hertz of the true value in order for accurate collision

detection and repair to be accomplished. For example, if the fundamental

frequency estimate is in error by some small amount fe' the frequency

error for partial J will be Jofe. An error of this sort may cause

problems for any separation strategy which attempts to extract features

directly from the short-time spectrum.

4.4 Evaluation of Voice Separation with Frequency Tracking

The complete automatic separation system was tested with the same test

signals used to evaluate the TWM frequency tracker and the voice separation

process with a priori frequency knowledge. The results for the four artificial

duet examples were found to be comparable to the results obtained with a

priori frequency knowledge, with the exception of some discrepancies due to

inaccuracy of the TWM frequency tracking estimates.

summarized in Figures 4.20 through 4.23.

These results are

The separation results for the contrived duet of example 5 are shown in
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Figure 4.24. The uncertainty of the fundamental frequency estimates for the

upper voice manifests itself in the imperfect separation results compared to

the original signal (Figure 4.13), and the result with a priori frequencies

(Figure 4.19).

In the Introduction, one of the stated assumptions was that only

nonreverberant recordings should be processed. However, because of the

pervasive nature of reverberation in recorded music, it was important to

determine whether this restriction could be relaxed.

Duet test examples 6 and 7 are recorded segments obtained from analog

record albums (for the musical scores see Figures 4.6 and 4.7). The

reverberation present in the recordings is a source of trouble, because the

duet separation procedure assumes that no more than two sets of harmonic
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partials are present in a single analysis frame. With reverberation added,

the implicit attack and release times of each note no longer match the

explicit information available from the analysis data. This is because the

frequency tracks of the current pair of notes are corrupted by the frequency

tracks of previous notes due to reverberation.

When a voice changes from one note to the next, the frequency tracker may

1) begin to follow the new note,
2) continue to follow the reverb tail of the previous note, or
3) hop back and forth between the two choices in a random fashion.

The first case occurs when the reverb tails of the previous note cause partial

collisions with the new note. The tails are NOT included in the two-voice

separation process, so the collisions are NOT identified and corrected. The
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second case occurs when the attack portion of the new note is missed,

particularly if the new note starts at a lower amplitude than the reverberated

note. When the third case occurs, the separation results are generally

unsatisfactory.

The separation output for example 6 is shown in Figure 4.25. The

presence of moderate surface noise (from the analog record album source) does

not impair the performances of the frequency tracking and separation

procedures. However, the reverberation present in the original recording is

not so benign. The sound quality degradation consists of the audible presence

of the reverberation tails of each note trailing over into the next note due

to partial collisions. Another even more troublesome effect is the presence

of the reverb tails of one voice in the separation output for the other voice!

Although the sounds of the reverb tails are desirable in the original

recording, they cause undesirable artifacts in the separated voices. The

reverb artifacts can be masked by the attack of the next note, however, so the

separation process may be satisfactory for certain combinations of voices and

reverb levels. The comments about the effect of reverberation for duet

example 6 carryover to example 7.

In example 7 the frequency tracking data for the tuba and trumpet voices

required manual editing. In this case the accuracy of the frequency tracking

is limited by the considerable amount of reverb present in the recorded

signal. After manual intervention to correct the frequency data, the

extraction of the trumpet voice is quite good. This is because the sharp

attacks on each note allow the frequency tracker to make a sharp transition at
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each new note. The tuba extraction is less successful, primarily due to the

presence of reverb tails from several trumpet notes in the tuba data due to

corruption of the closely spaced, low amplitude tuba partials by colliding

partials from the trumpet. The separation results are shown in Figure 4.26.

Example 8 is a recording of the same musical passage as example 7, except

that it was recorded in a nonreverberant room using two student musicians.

For this example no hand intervention was required to obtain reliable

fundamental frequency estimates, and the separation results are noticeably

better than for the album recording. The results for example 8 are shown in

Figure 4.27.
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CHAPTER 5

CONCLUSIONS

Considered in this dissertation is the problem of automatic decomposition

of a musical recording into its constituent signal components. With the

current implementation, reasonable success in both frequency tracking and

separation is assured only if recordings are restricted to duets of quasi­

harmonic voices having non intersecting fundamental frequency ranges specified

in advance and performed with an absence of reverberation. The major goal of

this work was to demonstrate the feasibility of composite signal decomposition

using a time-frequency analysis procedure.

The analysis/separation/synthesis system was implemented in the C

programming language on a small general-purpose digital computer (an IBM RT-PC

Model 125 workstation). Most of the software has also been ported

successfully to VAX-II and Convex minicomputers.

5.1 Summary of Findings

The research effort developed novel solutions to two fundamental

problems: estimation of the two fundamental frequencies of a duet from the

composite monaural signal and separation of the two voices given the pair of

fundamental frequencies. The procedure deals with the following situations:

1) In a typical duet the partials of one voice collide with the partials of

the other voice. The separation procedure determines the contribution of

each colliding partial to the resulting amplitude

interaction.

and frequency
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2) Level imbalances between the two voices may make the parameters of the

weaker voice difficult to ascertain. The frequency tracking and voice

separation procedures supply any missing information, if possible, using

knowledge of previous and subsequent analysis frames.

3) The duet voices may either play simultaneously, one at a time (during

solos), or not at all (during shared rests). The voice separation

process determines the current voicing paradigm and

appropriate separation method.

applies the

4) For recordings containing reverberation or other characteristics not

strictly within the guidelines set forth in Chapter 1, the performance of

the frequency tracking and voice separation procedures is degraded. The

acceptability of the degraded separation depends upon the particular

combination of voices and reverb and the intended application for the

results.

In summary, the results were excellent for combinations of voices and

frequencies in which the number of collisions between partials of the two

voices was small. The results were less satisfactory for frequency

combinations in which one voice had most of its partials coincident with

partials of the other voice, e.g., if the fundamental frequency of the upper

voice was an integer multiple of the fundamental frequency of the lower voice.

For typical duets the frequency relationship will change from note to note,

causing the quality of the extraction to vary from note to note as well.

Several implementation details are considered in Appendix A, and the

individual software modules are described in Appendix B.
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5.2 Future Directions

The results of this dissertation indicate that the procedure merits

further examination and development as it stands. However, some additional

areas not addressed in this project remain intriguing topics for further

research:

For a truly practical musical signal separation system, the output signal

should never be perceptually "worse" than the input signal. The system must

also be robust, with reasonable behavior for a wide range of input signals and

minimal operator intervention. As mentioned in Chapter 2, these goals may

imply a system with many levels of knowledge--from short-time spectra and

pitch tracking, to note segmentation and perhaps even analysis of musical

form. Moreover, such a system should be capable of adaptive behavior in

response to the changing characteristics of its input signal.

The problems associated with acoustic signals need further study. In

particular, the detrimental effect of reverberation encountered in this

investigation needs to be resolved, since most music is recorded with natural

or artificial reverberation. Further understanding of human perceptual

strategies might provide necessary breakthroughs in this area.

The approach in this project has been to reconstruct the individual

voices by resynthesis from modified time-variant analysis data. Another

approach could be developed in which the time-variant analysis would be used

for ~ote segmentation only, with the signals themselves generated according to

a prespecified artificial synthesis method. This approach has the advantage

that the separated voices would have controllable timbres and would be less
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The approach is an

extension of the method discussed in Chapter 3, in which a synthesis model

would be used for the replacement of partials damaged by collision.

case all partials would be directly (or indirectly) replaced.

In this

Finally, the MQ analysis/synthesis procedure has the potential to be a

useful foundation for several interesting applications in audio signal

processing. For example, the work of Serra (1986) and Smith and Serra (1987)

exploited the peak-tracking and smooth-phase continuity properties of the MQ

process for seamless splicing of real attack transients onto sustained

synthetic waveforms. This concept could be extended to the editing situation

in which an undesired Itpoplt or Itclick lt must be removed from a digital

recording, preferably without further corruption of the signal. The MQ

procedure can also be employed for independent time or frequency

modifications, such as pitch transposition, time scale compression/expansion,

and sound synthesis.
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APPENDIX A

IMPLEMENTATION NOTES

The examples used in this dissertation were all obtained using an

analog-to-digital converter running at a 20 kHz sample rate (monaural) and

16-bit (linear) quantization. All calculations during processing were

performed using 32-bit floating point arithmetic.

The input signal was converted to floating point and pre-emphasized using

a first-order fixed filter of the form:

H(z) = 1 - Ez- 1

(A.I)

with E=0.950. This high-pass pre-emphasis was included to help counteract the

typical spectral rolioff of musical sounds with increasing frequency. Without

pre-emphasis the low amplitude high-frequency partials are sometimes obscured

by the analysis sidebands of stronger partials. The pre-emphasis also helps

to equalize the partial amplitudes, compressing the internal dynamic range

requirements of the analyzer.

The short-time Fourier transform (STFT) was implemented using a fixed­

length Kaiser window either 511 or 1023 points in duration, corresponding to

25.55 msec or 51.15 msec, respectively. The choice of window length was made

according to the lowest note expected in the signal to be analyzed: The

longer window was used to resolve fundamental frequencies below approximately

100 Hz, with some loss of time resolution.
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The pre-emphasized, windowed input data was then zero-padded by a factor

of two (to length 1024 or 2048), and a standard fast Fourier transform (FFT)

algorithm was used to obtain the discrete Fourier transform (DFT) for each

data frame. The frame hop was set to a fixed increment of 128 samples (6.4

msec), corresponding to one-fourth or one-eighth of the window length.

The MQ analysis procedure (see Chapter 3) was applied to every frame of

the 8TFT. The spectral peak selection process was limited in two ways:

1) A user-specified minimum peak amplitude was used as a global noise floor.

2) A floating threshold level 50 dB below the maximum spectral peak in a

given frame was used to prevent misinterpretation of sidebands of the

window transform as signal components.

Each peak value from the short-time spectrum was stored in a C language

data structure, viz.

typedef struct _peak
{
float mag;
float freq;
float phase;
short int link;
struct peak *prev;
struct peak *next;
struct peak *bmatch;
struct _peak *fmatch;

} PEAK ;

/* magnitude of spectral peak */
/* frequency of spectral peak */
/* phase of spectral peak */
/* forward match to peak no. 'link' */
/* pointer to previous peak, this frame */
/* pointer to next peak, this frame */
/* pointer to best match, previous frame */
/* pointer to best match, next frame */

After processing, a time domain signal was synthesized directly from the

linked-list data structure using an additive procedure. Finally, the

synthesized signal was de-emphasized using the inverse of the filter in (A.1),
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converted from a 32-bit floating point to a 16-bit integer form, and passed

through a digital-to-analog converter for evaluation.
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APPENDIX B

DESCRIPTION OF SOFTWARE MODULES

The two-way mismatch fundamental frequency tracker and the duet

separation system described in this dissertation are each comprised of several

separate computer programs, subprograms, functions, and subroutines.

The following is a functional summary of each of the software modules.

This summary is provided to illustrate the development and evaluation approach

used in this project.

/' (MQ Peakfile)

Output

Figure B.l: Module Flow Diagram.
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'SIFT'

The primary signal analysis program is named 'sift' because its purpose

is to "sift out" the partials from the composite input signal. ~', The

'sift' program computes the STFT of the input signal and produces an

output file in the MQ analysis format (see Chapter 3). The program

operates (conceptually) in pipeline fashion: while a frame of the input

signal is read from a disk file, windowed, and processed by the FFT, the

prior frame is processed into the MQ representation, and the STFT and MQ

data of the frame before that are written to the output disk files. This

form of implementation reduces the internal storage requirements of the

analysis program. Also, output frames stored in the disk file are ready

for examination even while processing is underway.

'FCHECK'

The 'fcheck' module implements the two-way mismatch (TWM) duet

fundamental frequency estimation procedure. 'Fcheck' reads the MQ-format

output file produced by 'sift' and produces a separate frequency output

file for the two duet voices. The user supplies the name of the MQ-

format file, the two nonoverlapping fundamental frequency ranges of the

duet voices, and an estimate of the number of significant partials for

each voice.

*This name should NOT be confused with the Simplified Inverse Filter
Tracking (SIFT) algorithm for fundamental frequency estimation using linear
prediction techniques [Markel, 1972J.
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In the event that the frequency estimates produced by 'fcheck' contain

obvious errors, an editor program called 'patch' can be used to manually

correct the offending data.

'SEPAR '

The program 'separ' operates on three files containing information

sources about the duet:

frequency tracking estimates.

its STFT, its MQ representation, and its

'Separ' uses this information to perform

the track segregation and linear equations separation strategies

described in Chapter 3. A pair of partials too close together for the

direct separation strategies is marked for further processing. The

'separ' program is run twice: once to extract the lower voice of the

duet, then again to extract the upper voice. Thus, the output of the two

runs is a pair of MQ-format files ready for final processing and

resynthesis.

'FGLEAN'

Any unresolved partial collisions contained in the output files produced

by Iseparl are handled by 'fglean'. Unresolved collisions are treated by

one of the secondary strategies discussed in Chapter 3, e.g., by

examination of the amplitude "beat" patterns of the colliding partials.

'Fglean' also contains a set of empirical context rules designed to

preserve at least first-order amplitude continuity of the partial tracks.

For example, a rule to eliminate a single-frame "dropout" can be
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expressed in words such as

IF: a partial track has amplitude ZERO in the current frame,

AND: the track is matched to a nonzero peak in the previous frame,

AND: the track is matched to a nonzero peak in the next frame,

THEN: replace the amplitude in the current frame with the average of
the matching peaks in the previous frame and the next frame.

The output of 'fglean' is the final MQ-format results for one of the duet

voices.

'PEAKSYN'

The 'peaksyn ' program is used to synthesize a time-domain signal from the

amplitude, frequency, and phase data for each track in an MQ-format file.

The synthesized signal is converted to a 16-bit integer form for D/A

conversion and playback.

In addition to the processing modules listed above, several graphics

programs are used for display and evaluation of MQ-format files: 'Printpeak '

prints the MQ analysis data in text form for a given range of frames (only

used for debugging purposes); 'Readpeak' displays the MQ data as a frequency

vs. time graph; and 'Dpeak ' displays the MQ data as a three-dimensional graph

of frequency and amplitude vs. time.

Program code listings have not been included in this dissertation due to

their length. Interested persons may make arrangements with the author to

obtain program listings and/or tape examples of this work.
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