
111
US006301603Bl

(12) United States Patent
Maher et al.

(10) Patent No.:
(45) Date of Patent:

US 6,301,603 Bl
Oct. 9,2001

(54) SCALABLE AUDIO PROCESSING ON A
HETEROGENEOUS PROCESSOR ARRAY

(75) Inventors: Rohert Crawford Maher; Jeffrey
Barish, both of Boulder, CO (US)

5,889,989 * 3/1999 Robertazzi et al. 709/105
5,940,086 * 8/1999 Rentschler et al. 345/503
5,991,808 * 11/1999 Broder el al. 709/226
6,009,507 * 12/1999 Brooks et al. 712/28

OTHER l'UBLlCAJIONS

(73) Assignee: EuPhonies Incorporated, Boudler, CO
(US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.c. 154(b) by 0 days.

Linton, K.; Gould, L; Terepin, S.; Purvis, A; "On the
Re-Allocation of Processing Resources for Digital Audio
Signal Processing", lEE Colloquium on Digital Audio Sig
nall'rocessing 1991 7/1-7/4.*

* cited hy examiner

U.S. PATENT DOCUMENTS

References Cited

Appl, No.: 09/024,793

Filed: Feb. 17, 1998

Int. CI? G06F 9/00
U.S. CI 709/105; 712/34; 712/35;

700/94
Field of Search 709/105, 104;

712/34, 35, 28

22 Claims, 7 Drawing Sheets

ABSTRACT(57)

The present invention provides apparatus and methods
which allow music synthesis and audio processing tasks to
dynamically scale from a default processor to additional
processors in a heterogeneous array of processors in a
manner transparent to the user. A router running on one of
the processors in the array knows or estimates the load on
each processor, and dynamically allocates processing tasks
based upon the current load on each processor and its
capacity. Processing parameters are shared between all the
audio processors to ensure that perceived audio quality is
independent of where a task is running.

Primary Examiner-Forester W. Isen
Assistant Examiner-Brian Pendleton
(74) Attorney, Agent, or Firm-Jennifer L. Bales;
Macheledt Bales & Johnson LLP

Takeda et al. . 84/602
Limbris et al. 84/622
Higashi . 84/602
Usami et al. 395/800
O'Connell 84/622
Kubota et al. 84/622
Witte et al. 709/105

12/1994
12/1994
10/1996
12/1996

1/1997
2/1997
8/1997

5,376,750
5,376,752
5,567,900
5,584,034
5,596,159
5,604,324
5,655,120 *

(56)

(58)

(21)

(22)

(51)
(52)

Host Processor
104 Shared Audio

Information
Storage

(e.g., Patch Set) 222(1)
Hardware

206 3~~iD-4 Acceleration
Host Application Program JJ}- -- Unit #1

ReqUiring Audio Processing)II
~"

224(1) 218(1)
(e.g., a game)

''''~,

210
1'///

\ r-...
\ 220(2)

202 \,'1\
,/212 \ Hardware

V""
, 222(2) Acceleration

~ f-- \~ Unit #2
Host Based Audio Process Router Process \ .~ 218(2

(e.g., music synthesis) 224(2)
214 , i. .: Timbre database I

I (method B) : 220(N)

216
I I

~ Hardware
I 230 I204 (__________ 1

1----------' 222(N) Acceleration

1Note database i Unit#N

l (method C) i 224(N) 218(N)

l 232 i

!"L~;d-I~;k~;--i
I (method D) I
I I

L______}~~J 208

u.s. Patent Oct. 9, 200t Sheet 1 of 7 US 6,301,603 Bl

Host
Processor

Cache
Memory ~

106 104

Multimedia
Computer System

100

Host Memory
(RAM) System

Controller

110
114

Graphics I-
Subsystem

120

Hardware
Acceleration

Unil1 132

118 Hardware
Acceleration

Unit L 134

140

136

Hardware
Acceleration

Unit N

Hardware
Acceleration

Unit MI

Serial
(e.g., MIDI)

130

Peripheral
Controller

Read Only

Memory ~
122

Keyboard/ 138
Mouse

124 142
L.----..J

U
~l

L- ---l '--_~

Other Buses
(ISA,IDE,

etc.)
126

FIGURE 1

~.
00.

o
n...
~~

N==....

~
~.....
~=.....

u:
="("C
("C....
N

o....
'IHardware

Acceleration
Unit#N

218(N)

220(N)

Hardware
Acceleration

Unit #1
" , 218(1)!

222(1)

I
222(N)

--:-JI'
224(N) I I

~

[""'I"

,"

I""""

...
Router Process

Shared Audio
Information

Storage
(e.g., Patch Set)

206

,----------'
I Note database l
: (method C) I

I
l 232 j

i -.

: Timbre database I
, (method B) :
I I
1 ~~O_!

"JI

214

216

I

202

204

Host Processor
104

210 /'
,/

/
,/212

HostBased Audio Pro 1/ I
(e.g., music SyntheS~)ss~

Host Application Program
Requiring Audio Processing

(e.g., a game)

1-----------
: Load lookup l
I (method 0) I
I I

L 3~~J 208

FIGURE 2

~
ir:
0'1
~
=~
b.,
=~
c=
~

~.
00.

Host Memory
~
~.....
~

Host-Based Host System =r
Synthesis Patch 'n' Bus Hardware Acceleration
process 308(N) (e.g. PCI) Unit # 1

218(1)

"
I

0204 I I I . I I

n...
~~

SynthesiS~ I N==Data I Patch 2 Hardware Acceleration
308(2) Unit #2

218(2)

Patch 1 u:· ="308(1) ("C

· ("C....· ~Index Table ·
0

~\-I
....

Base Address 304) 306 Hardware Acceleration 'I
I Unit #N

220(N) 218(N)

FIGURE 3

~
ir:
0'1
~
=~
b-,
=~
c=
~

Sound Produced

0
n...
~~

N

404
==....

u:
="("C
("C....

406

,I:;;..

0....
'I

~ Initiate Unit#2

I Dcl,yT2 I L"e",y 01 P'""'''''9 U,' #2 I
J,lnitiate Unit #3

I D,I'y1"3 I L,'oo,,>, of e'''''''''''9 U,U3 I

412

402

~.
00.
~
~.....
~=.....

~ Initiate Unit#4

I L'fe"", of P'"'''''''''' U" .. I 40B

I - ~

~
ir:
0'1
~
=~
b-,
=~
c=
~

-'--'--'j Hardware Acceleration
!

Unit #1I
Host-Based 504 i 506 218(1)I

Audio Process i
I
i
I
i

204 I
i
I
i Hardware Acceleration!

T Unit # 2
508 218(2)

Hardware Acceleration 510 D/A 512
Unit #3 Converter .

i
218(3) 502

I
i
I

L_~3_~_

Host System Bus
(e.g., PCI)

FIGURE 5

~.
00.
~
~.....
~=.....

o
n
l"'"
~~

N==....

u:
="("C
("C....
U1

o....
'I

~
ir:

-..a-..
~

=r-'
a-..=~
c=
~

r-'--'--" 606(1) Hardware Acceleration
I Unit #1

Host-Based i
I 218(1)

Audio Process i
I
i
I
i

204 I
i
I

1610
i
I Hardware Accelerationi 606(2)
I

Host-Based
i Unit # 2
I 218(2)

Mixing
i...

Process

602

L612 608 Hardware Acceleration 510 D/A 512
Unit #3 Converter

Host-Based
218(3)

502
Reverberation

Process

604

302

Host System Bus
(e.g., PCI)

FIGURE 6

~.
00.
~
~.....
~=.....

o
n
l"""
~~

N==....

u:
="("C
("C....
0'\

o....
'I

~
ir:
0'1
~
=~

Qo.,
=~
c=
~

u.s. Patent Oct. 9, 200t Sheet 7 of 7 US 6,301,603 Bl

Hardware Unit Maximum Voices [A] Currently Active Voices [B] Voices Available [A-B]

#1 24 24 0

#2 32 20 12

#3 1 6 0 16

FIGURE 7

Hardware Unit Load Limit Current Loading Available

1 100% 6 voices @ 5% =30% 38%
3 special voices @ 8% =24%

reverb effect = 8%
TOTAL =62%

#2 50% 4 special voices @ 8% = 32% 18%

#3 80% 0 80%

FIGURE 8

us 6,301,603 Bl
2

SUMMARY OF THE INVENTION

It is an object of the present invention to provide appa
ratus and methods which allow music synthesis and audio
effects processing to dynamically scale from a default pro
cessor to additional heterogeneous processors, in a manner
that is transparent to the user.

The present invention dynamically allocates audio pro
cessing tasks hetween two or more heterogeneous
processors, for example a host processor such as might be
found in a PC and a hardware acceleration unit such as might
he found on a sound card in the PC The audio processing
load on each processor is determined and tasks are allocated
based upon this determination. Each audio processor com
municates with a common audio processing parameter data
set to ensure that the sound quality is the same regardless of
which processor is used.

In general, the goal of this invention is to optimally load
the hardware acceleration unites), and only invoke the pro
cessing power of the host when the accelerator resources are

45 used up-in other words, to keep the host as idle as possible
while reserving its resources for cases in which the instan
taneous processing load exceeds the accelerator capabilities.

It is important musically that the sound produced by the
host processor and the hardware acceleration units be of

50 identical quality so that the user is not aware of which
resources are being used for processing. This "seamless"
behavior requires that the processing engines running on the
various processors implement the same algorithm despite
differences in the architecture of the processors. It also

55 requires that all processing engines receive the same audio
processing parameters. Delivering the same audio process
ing parameters to all processing engines can be achieved by
duplicating the synthesis and processing controls and param
eters for the host and the accelerators, but this is inefficient

60 in storage and access handwidth. Instead, the present inven
tion puts audio processing parameters in the memory of the
host PC and permits the hardware accelerators to access
these parameters via the bus access mechanisms found in
contemporary multimedia systems (e.g., the "PCI bus"

65 found in modern PCs).
The heterogeneous nature of the processor array results in

differences in the time it takes each engine to produce audio

For example, the number of voices of music synthesis
required can vary from a few to 32, 64, or more. Similarly,
the number of streams of 3D positioning can vary from 1 or
2 to 8, 16, or more. The current practice for implementing

5 algorithms on hardware accelerators or the host CPU is to
place an a priori limit on the number of signal processing
tasks the algorithm will perform. Such a limit is required in
a hardware accelerator to determine the hardware resources
that need to he provided. In a host-based implementation,

10 the limit is required to assure that some computational
resources remain for the CPU to run the application, the
operating system, and any other tasks it may be required to
perform concurrently. Once a processor reaches its limit, the
processor either ignores requests to perform additional tasks

15 or it finds a way to shed tasks already running to make way
for the new request.

A need remains in the art for apparatus and methods
which allow music synthesis and audio effects processing to
dynamically scale from a default processor to one or more

20 additional processors which may not be of the same type
for example from a DSP to the host CPU-in a manner
which permits the audio system to support more tasks as the
need arises.

BACKGROUND OF THE INVENTION

1
SCALABLE AUDIO PROCESSING ON A

HETEROGENEOUS PROCESSOR ARRAY

The most common way to control audio effects processing
is through Application Program Interfaces (APIs) provided
as part of the operating system running on the PC (e.g.,
Microsoft Windows 95). For example, the DirectSound3D
API controls an audio effect that makes it seem as if a sound
is emanating from any location surrounding the listener.
Audio effects processors are normally able to process some
number of audio streams at the same time (often 8 for 3D
positioning).

Audio processing in personal computers is accomplished
either using hardware accelerator chips (supplied on add-on
cards or on the mother board) or using the host CPU.
Hardware accelerator chips can be based on fixed-function
hardware designed specifically for audio processing or
general-purpose digital signal processors that are pro
grammed for audio processing. Hardware accelerators
increase cost, particularly when they are designed to support
worst-case signal processing requirements.

Using the host processor has the advantage of reducing
cost and hardware complexity, but distracting the host
processor with audio processing tasks slows the operation of
a current application such as a game.

The computational requirements for audio processing
often vary depending on the requirements of the application.

1. Field of the Invention
The present invention relates to apparatus and methods

for dynamically scaling audio processing tasks from a
default processor to one or more additional processors which
may he of a different type.

2. Description of the Prior Art
Many applications for personal computers require audio

processing either for music synthesis or audio effects such as
artificial reverberation and 3D localization. Audio is used for
musical education, background for advertising, sound
effects and musical accompaniment for computer games,
and entertainment. Music synthesis offers advantages over
the playback of prerecorded music. It is easier to modify the
musical accompaniment in response to actions of the
listener, for example by changing the tempo or the orches
tration as the intensity of game play increases. Also, the
control parameters for the synthesizer require a much lower
bandwidth than streams of digitized audio samples.
Similarly, adding audio effects during playback makes it
easier to modify the effect in response to actions of the 25

listener, for example by changing the apparent position of a
sound in response to joystick manipulations.

111e most common method for controlling music synthe-
sis in a multimedia system is via MIDI (Musical Instrument
Digital Interface) commands. MIDI represents music as a 30

series of events, such as "note on," "note off," and "volume."
MIDI organizes the synthesis process into sixteen logical
channels, where each channel is assigned a particular
"patch" (musical timbre). The stream of MIDI events is
normally produced by an application such as a music 35

sequencing program or game, hut it can also he provided hy
an external controller such as a music keyboard. The music
synthesizer responds to the MIDI stream to create the
desired audio output. Synthesizers are normally able to
synthesize some number of voices (often 32) at the same 40

time. The MIDI standard permits these voices to have up to
16 different timbres.

us 6,301,603 Bl
3 4

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

eration unit performs mixing of audio signals from other
hardware acceleration units and the host based audio pro
cess.

FIG. 6 is a block diagram showing signal routing for a
5 second shared processing embodiment, wherein a host based

mixing process performs mixing of audio signals from the
hardware acceleration units and the host based audio pro
cess.

FIG. 7 is an example of a database for use with the
emhodiment of FIG. 1.

FIG. 8 is an example of a lookup table for use with the
embodiment of FIG. 3.

FIG. 1 is a block diagram of a multimedia computer
system 100 capahle of dynamic and scalahle audio process
ing. System 100 includes a host proccssor 104 and one or
more hardware audio acceleration units 132, 134, 136, 140.

20 Multimedia computer systems such as 100 typically also
include cache memory 106, to improve performance, con
nected to processor 104. System controller 114 generally
comprises a hardware chip that manages access to system
memory among the host processor and peripheral proces-
sors. System controller 114 is connected to RAM memory
110 for running programs and the operating system, and a
graphics subsystem 118 implemented in software or on a
graphics card. Peripheral controller 130 is a protocol unit,
generally comprising a chip, which controls relatively slow
peripherals such as the keyboard. Peripheral controller 130
communicates with peripherals such as ROM bus 122, the
keyboard and mouse bus 124 and other busses (such as llJE
or ISA) 126. A PCI bus 120 (for example) connects system
controller 114, peripheral controller 130, and possibly audio
acceleration units and optional acceleration cards (not
shown).

Hardware acceleration units 132, 134, 136, 140 may be
connected to PCI bus 120, or to peripheral controller 130 via
(for example) a serial bus 142 or a USB/1394 bus 138. The
hardware acceleration units are typically able to act as bus
masters, thereby allowing the accelerators to access host
system memory 110 and other resources.

Hardware acceleration units 132, 134, 136, 140 may be
fixed-function or programmable. In either case host proces
sor 104 is able to control the acceleration units via a
command stream such as MIDI or a proprietary communi-
cation scheme. It is therefore a feature of the present
invention that host processor 104 determines the appropriate
distribution of the synthesis and processing tasks across the
available hardware resources.

FIG. 2 is a block diagram showing the communication
between the host proCtssor 104 and hardware acceleration
units 218(1), 218(2), 218(N). Host-based router process 208
performs a monitoring function (generally under the control

55 of host proCtssor 104) to determine the current load and
available capacity of each hardware acceleration unit and of
host based audio process 204. Based upon this information,
router process 208 determines the allocation of any pending
music synthesis or audio processing commands. In this

60 manner, router process 208 may follow a variety of strate
gies to utilize optimally the available computational
resources. For example, it is often desirable to utilize the
hardware acceleration units 218 first, and only overflow
tasks to the host audio proccss 204 when the hardware units

65 are fully loaded.
All of the audio processing units, comprising hardware

acceleration units 218 and host audio process 204, prefer-

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a multimedia computer
system capable of dynamically allocating audio processing
load according to the present invention.

FIG. 2 is a block diagram showing the communication
between the host processor and hardware acceleration units
of FIG. 1 in more detail.

FIG. 3 is a block diagram showing communication
between the host based audio process and the hardware
acceleration units of FIG. 2 with the audio processing
parameters in host memory.

FIG. 4 is a time line showing equalization of latency
among the host based audio proccss and the hardware
acceleration units of FIG. 2.

FIG. 5 is a block diagram showing signal routing for a first
shared processing embodiment, wherein a hardware accel-

output in response to control inputs (known as "processing
latency"). The latencies of the various processors must be
equalized to assure synchronization of the audio outputs.

The following is a partial list ofkcy features of the present
invention:
1) Configuration supports a host processor and a plurality of

coprocessors.
2) Host determines allocation of audio tasks based upon load

and available resources.
3) Preferred arrangement is to overflow to the host once the 10

hardware accelerators are fully utilized.
4) Scaling of audio processing from one processor to others

is seamless.
5) IIost handles synchronization of processors.
6) Resources (such as host memory and Dz/vconvcrsion) can 15

he shared.
7) Supports autonomous audio processing units (host dis

tributes commands to acceleration units).
R) Supports slave audio processing units (host manages all

resource allocation of accelerators).
Apparatus according to the present invention dynamically

allocates audio processing load between at least two hetero
geneous audio processors, such as the host processor and a
hardware acceleration unit. It includes means for determin
ing the current audio processing load value for each 25

processor, and means for allocating audio processing load
among the proCtssors dynamically, based upon the load
values. Generally, a common audio information data set is
provided and each processor has access to it.

Allocation of audio processing tasks among the proces- 30

sors may involve music synthesis voices and/or audio
streams effects processing. If voices are allocated, they may
be divided into groups according to timbre and different
groups allocated to different processors. It is often useful to
allocate all of the processor load to one processor (for 35

example a hardware acceleration unit) before beginning to
allocate load to other processors (for example the host
processor).

A variety of methods may be used to determine the load
values of the processors, including counting the voices or 40

streams already allocated to each processor and estim ating
the load value based upon the number of voices, computing
load figures for each musical note or effect and computing
the load value of each processor based on the voices and
effects allocated to it and the load figure for each voice and 45

effect, or polling each processor for its load value.
The present invention includes means for determining a

latency value for each processor, and means for selectively
applying a delay to the audio processing allocated to tach
processor based upon the latency values of each processor. 50

us 6,301,603 Bl
5 6

Method C: Voice stream divided by estimating load (better
router)

Improving upon Method B, if a hardware acceleration
unit 118 is unable to report its load condition, router 208 may

5 obtain a better estimate of the accelerator's current loading
by using a lookup table 234 of load figures for the supported
range of timbres, effects processing, processor speed, and
similar information. An example of such a lookup table is
shown in FIG. 8. This method is an improvement over

10 Method B because the processing load may vary from one
voice to another, so simply counting voices is a sub optimum
strategy. Router 208 attempts to provide an optimum load
allocation using the estimated figures.
Method D: Voice stream divided by load reporting (smart

15 router)
In the preferred configuration, each hardware acceleration

unit 218 reports its current availability for additional audio
process loading, via request streams 222. This report could
contain information such as the processor's idle percentage.

20 Router 208 tabulates the load information and routes new
voices accordingly. This is a preferred arrangement, since
router 208 is able to perform the routing function with the
most reliable measurements of system resources.
Method E: Voice stream divided by a combination of load

25 and priority
In a practical system it is likely that a combination of load

information and predetermined processor priority provides
the greatest henefit. For example, it is often desirahle in
practice to utilize hardware acceleration units 218 com-

30 pletely before utilizing host audio process 204. In other
words, an important feature of the present invention is
scalability to use the host audio process 204, but only when
this is necessary to handle new voices after the hardware
accelerator resources 218 are fully committed. This strategy

35 is desirable because it makes use of the dedicated synthesis
hardware to the greatest extent possible before making use
of the shared host processor. It is useful to utilize the voice
stream division technique of Method D, for example, com-
bined with this strategy.

in a second preferred embodiment of invention, slave
(non-autonomous) hardware acceleration units 118 are uti
lized. The advantage of slave units is that router 208 may
register the capabilities and resources of each accelerator,
then allocate the synthesis and audio processing tasks freely.

45 Router 208 automatically determines the load on each
processor without polling, since Router 208 is an integral
part of the processing function. In this method, router 208
can view the slave accelerators as a voice pool in which the
router sets up and maintains the control information. Each

50 processing unit 218, 204 then pulls its audio processing
parameters from a voice table 206 in host memory via the
host bus 120 (e.g., PCl). In this manner the complexity of the
hardware acceleration units 218 is reduced at the expense of
increasing the complexity of router 208. This tradeoff is

55 increasingly desirable as the speed and capability of host
processors continues to improve with time.

In the configuration of FIG. 2 it is feasible for all or part
of the audio processing parameters (synthesis and audio
process control data) to be stored in shared host memory 206

60 and shared among some or all of the hardware acceleration
units 218 according to the present invention. Similarly, the
audio processing parameters could be stored elsewhere in
host resources such as on a hard disk drive, compact disc, or
network server. In this manner each of the audio processing

65 units 218, 204 can create output signals that are indistin
guishable from one another, since the audio processing
parameters are shared in common. Moreover, the present

ably communicate with a common, shared set of audio
processing parameters (e.g. a patch set) 206 via lines 212,
220(1),220(2), 220(N). This process is shown in more detail
in FIG. 3. Host-based router process 208 receives audio data
and control parameters from the host application program
202 (e.g. a computer game) requiring audio processing.
Router 208 then allocates the audio processing load in a
scalable manner among audio processing units 218, 204 via
command streams 216, 224. In general, router 208 also
receives information from audio processing units 218, 204
via request streams 214, 222, in order to assess the load on
each processing unit.

Router 208 may adopt any of a variety of strategies for
allocating audio processing load, depending upon the type of
hardware acceleration units 218 available, the amount of
processing power available in host processor 104, and other
factors (e.g. competing tasks and task priority). A set of
preferred strategies for allocating the computational
resources among host audio process 204 and hardware
acceleration units 218 is described below. Those skilled in
the art will appreciate changes and additions to the preferred
strategies that are within the spirit of this invention.

In a first preferred embodiment of the present invention,
hardware acceleration units 218 are largely autonomous
processors. Router 208 forwards particular commands to
each hardware acceleration unit 218 (via command streams
224) to begin processing particular voices with particular
sets of parameters. The actual manner in which the process
ing takes place is handled by the individual hardware
acceleration units 218. One means for transmitting the host
commands to the hardware acceleration units is via the
MIDI protocol. In the preferred configuration the hardware
acceleration units 218 and host audio process 204 share a
common repository 206 of audio processing parameters
located in host memory accessible via a bus arrangement
(e.g., PCI).

According to the first preferred embodiment, with autono
mous hardware acceleration units 218, router 208 operates
as a timing and routing device that feeds the hardware
accelerators and possibly a host audio process 204. The 40

routing function can be accomplished without the need for
user intervention or control. Several methods of dividing the
processing load may be used in conjunction with this first
embodiment:
Method A: Voice stream divided by processing function

In this routing method the decision as to which processing
unit is to receive a particular audio processing task is based
upon the required processing functions, such as the required
synthesis patch or timbre. This method is of practical
usefulness if the computation required to perform a particu
lar audio process is best suited to a specific hardware
acceleration unit 118 or to the host audio process 204. In
music synthesis, for example, Router 208 would maintain or
have access to a database 230 identifying which timbre is
associated with each musical note, and route the note on and
note off events accordingly.
Method B: Voice stream divided by counting voices (blind
router)

In situations where one or more of the hardware accel
eration units 118 is unable to provide load measurement
information to router 208, router 208 may estimate the
accelerator's current loading by keeping track of the number
of active voices being processed by each accelerator 118.
Since the maximum allocation of voices to a particular
processing unit may vary, the host must maintain a database
232 of voice limits for each unit. An example of such a
database is shown in FIG. 7

us 6,301,603 Bl
7 8

of the processing units. Processes such as sample rate
conversion, audio effects, and D/A hardware mixing are
often suitahle for sharing. The particular routing scheme of
FIG. 5 relies most heavily on hardware acceleration unit
218(3) to perform the signal mixing function. Mixed signal
510 is converted to an analog audio signal 512 by D/A
converter 502.

FIG. 6 is a block diagram showing signal routing for a
second shared processing embodiment, wherein a host based
mixing process 602 performs mixing of audio signals from
the hardware acceleration units 218 (via lines 606) and host
based audio process 204 (via line 610). A host based
reverberation proCtSS 604 is also shown to illustrate other
types of audio processing which could be performed on the
comhined audio output 612. FIGS. 5 and 6 are included to

15 show the practical flexibility of the current invention, and
numerous other arrangements in the spirit of this invention
will be apparent to those skilled in the art.

While the exemplary preferred emhodiments of the
present invention are described herein with particularity,
those skilled in the art will appreciate various changes,
additions, and applications other than those specifically
mentioned, which are within the spirit of this invention. For
example, audio processing tasks required to support com
mon operating system features, such as Microsoft's Direct-
Sound" Directxound'Il.r!'", and Directlvlusic"", can be
assigned to hardware acceleration units according to a
routing strategy embodied by this invention. In another
practical configuration, the routing task could be performed
by a hardware acceleration unit rather than by a host-based
routing process. It may also he useful in practice to vary
adaptively the method used to determine task routing
according to the current loading of the host proCtssor, rather
than having the method predetermined and fixed. Similarly,
the timing adjustments (latency equalization) of this inven-
tion can be updated dynamically to reflect changes in system
configuration, such as changes of audio sample rate.

What is claimed is:
1. Apparatus for dynamically scaling audio processing

among processors in a heterogeneous processor array, said
array comprising a default processor and at least one addi
tional processor, said apparatus comprising:

means for determining a current audio processing load
value [or tach proCtssor; and

means for allocating audio processing load among the
processors dynamically, based upon the load values;

wherein the means for allocating comprises:
means for dividing voices into groups according to

timbre;
means for selecting a particular group of voices to

allocate to an individual processor; and
means for allocating the particular group of voices to

the individual processor.
2. The apparatus of claim 1, further comprising:
a common audio processing parameter data set; and
means for permitting each processor to access the com

mon audio processing parameter data set.
3. The apparatus of claim 1 wherein the means for

allocating further comprises means for allocating effects
processing among the processors.

4. The apparatus of claim 1 wherein the means for
allocating further comprises means for allocating all audio
processing load to the default processor until the audio
processing load value of the default processor reaches a
predetermined level.

5. The apparatus of claim 1 wherein the means for
determining comprises:

means for requesting a current load value for each pro
cessor; and

invention facilitates the management of the audio processing
parameters by router 208 since changes made to the audio
processing parameters are shared by all of the active audio
processors.

FIG. 3 is a block diagram showing communication 5
between the host based audio process 204 and the hardware
acceleration units 218 of FIG. 2 with shared audio process
ing parameters 206 in host memory. To illustrate the advan
tages of the present invention, consider the repository of
synthesis information, or patch set, located in host memory
206 as depicted in FIG. 3. Host audio process 204 and each 10

hardware acceleration unit 218 are provided with the base
address 304 of the patch set, so each unit is able to access
the stored data directly via lines 212, 220. Any changes
made to the patch set stored in 206 are shared by all the
processors.

Audio processing parameter set 206 can contain a variety
of data related to the required audio processing task. In the
case of a wave table music synthesis process, the audio
processing parameters would contain such things as the
index table (address lookup) of each musical timbre, the 20

digital audio samples comprising the recorded audio signal,
the length of the attack and loop portions of the recorded
signal, and the amplitude envelope (volume) settings.
Similarly, in the case of an audio effects task, such as
reverberation, the audio processing parameters would con
tain the gain settings and coefficients of the desired audio 25

effect. Thus, by providing the means for sharing the audio
processing parameters among the host process 204 and
hardware acceleration units 218, it is possible to ensure a
seamless and consistent presentation of the audio material,
no matter which resource actually performs the processing. 30

FIG. 4 is a time line showing equalization of latency
among host based audio process 204 and hardware accel
eration units 218 of PIG. 2. Distributing tasks among the
host audio process and the hardware acceleration units must
be seamless. It is a feature of the current invention to provide 35
a means for synchronization of the plurality of processors.
Each processor can be characterized by a characteristic
delay, or latency, between receiving a command to begin
processing or synthesizing a musical note and the production
of the digital audio samples due to that command. The
latency is due to a combination of the time to decode the 40

message, to perform the audio process computation, and to
transfer audio samples to the data buffer that feeds the digital
mixing or digital to analog conversion system.

Router 208 provides timing equalization by inserting
sufficient delay to the commands feeding each synthesis unit 45

to equalize the inherent delay of each processing unit, as
depicted in FIG. 4. In this manner a group of separately
processed sound events 410, intended to be heard
simultaneously, are sent to each of the audio processing units
at differing times so that the output signals occur simulta - 50
neously.

In the example of PIG. 4, timelines 402, 404, 406, 408
show that the latency of processing unit 4 is the longest,
followed by processing unit 3, processing unit 1, and pro
cessing unit 2, in order. Thus (assuming a request for a 55

simultaneous sound output 412 goes to each processing unit)
no delay is necessary before router 208 sends the request to
processing unit 4, a small delay is necessary before the
request is sent to processing unit 3, a slightly longer delay
is necessary before the request is sent to processing unit 1,
and the longest delay is necessary before the request is sent 60

to processing unit 2.
FIG. 5 is a block diagram showing signal routing for a first

output mixing embodiment, wherein a hardware accelera
tion unit 218(3) performs mixing of audio signals from other
hardware acceleration units 218(1) and 218(2) and from host 65
based audio process 204. It may be desirable in practice to
share a particular audio processing task among some or all

us 6,301,603 Bl
9 10

65

40

15. The apparatus of claim 13 wherein the means for
allocating further comprises means for allocating all audio
processing load to the default processor until the audio
processing load value of the default processor reaches a

5 predetermined level.
16. The apparatus of claim 13 wherein the means for

determining comprises:
means for requesting a current load value for each pro

cessor; and

means for receiving a current load value from each
processor.

17. The apparatus of claim 13, further comprising:
means for determining a latency value for each processor;

and

means for selectively applying a delay to allocated pro
cessing load based upon the latency values.

18. Apparatus for dynamically allocating audio process
ing tasks between at least two processors, said apparatus

20 comprising:

a host audio processor; and

at least one hardware acceleration unit connected to the
host processor;

wherein the host processor includes:
means for determining current audio processing load

values for the host processor and the hardware
acceleration unit; and

means for allocating audio processing tasks among the
host processor and the hardware acceleration unit
dynamically, based upon the load values; and

wherein the means for allocating further comprises:
means for dividing voices into groups according to

timbre;
means for selecting a first group of voices to allocate to

the host proct:ssor and a second group of voices to
allocate to the hardware acceleration unit; and

means for allocating the first group of voices to the host
processor and the second group of voices to the
hardware acceleration unit.

19. The apparatus of elaim 18, further comprising:
a common datahase of audio processing parameters;

means for permitting the host processor to access the
common database; and

means for permitting the hardware acceleration unit to
access the common database.

20. The apparatus of claim 18 wherein the means for
50 allocating further comprises means for allocating effects

processing among the host processor and the hardware
acceleration unit.

21. The apparatus of claim 18 wherein the means for
allocating further comprises:

means for allocating all of the processing load to the
hardware acceleration unit until its load value reaches
a predetermined level.

22. The apparatus of claim 18, further comprising:
means for determining a latency value for the host pro

cessor and the hardware acceleration unit; and
means [or selectively applying appropriate delay to pro

cessing tasks allocated to the host processor and the
hardware acceleration unit based upon their respective
latency values so that audio outputs produced by all
processors are synchronized.

means for receiving a current load value from each
processor.

6. The apparatus of claim 1, further comprising:
means for determining a latency value for each processor;

and
means [or st:lt:divt:ly applying a delay to allocated pro

cessing load based upon the latency values.
7. Apparatus for dynamically scaling audio processing

among processors in a heterogeneous processor array, said
array comprising a default processor and at least one addi_ 10

tional processor, said apparatus comprising:
means for determining a current audio processing load

value for each processor; and
means for allocating audio processing load among the 15

processors dynamically, based upon the load values;
wherein the means for determining comprises:

means [or counting the number of voices allocated to
each processor; and

means for estimating the audio processing load value
[or each proct:ssor based upon the number of voices
assigned to each processor.

8. The apparatus of claim 7, further comprising:
a common audio processing parameter data set; and
means for permitting each processor to access the com- 25

mon audio processing parameter data Scf.

9. The apparatus of claim 7 wherein the means for
allocating further comprises means for allocating effects
processing among the processors.

10. The apparatus of claim 7 wherein the means for 30

allocating further comprises means for allocating all audio
processing load to the default processor until the audio
processing load value of the default processor reaches a
predetermined level.

11. The apparatus of claim 7 wherein the means for 35
determining comprises:

means for requesting a current load value for each pro
cessor; and

means for receiving a current load value from each
processor.

12. The apparatus of claim 7, further comprising:
means for determining a latency value for each processor;

and

means for selectively applying a delay to allocated pro-
cessing load based upon the latency values. 45

13. Apparatus for dynamically scaling audio processing
among proct:ssors in a ht:lt:rogt:nt:ous proct:ssor array, said
array comprising a default processor and at least one addi
tional processor, said apparatus comprising:

means for determining a current audio processing load
value for each processor; and

means for allocating audio processing load among the
processors dynamically, based upon the load values;

wherein the means for allocating comprises means for 55

allocating voices and effects processing among the
processors; and

wherein the means for determining comprises a lookup
table of load figures for each note and effect, and means
for computing the audio processing load value for each 60

processor based upon the voices and effects assigned to
each proct:ssor and the load Iigure [or each nott: and
effect.

14. The apparatus of claim 13, further comprising:
a common audio processing parameter data set; and
means for permitting each processor to access the com-

mon audio processing parameter data set.

