
Preprint No. 4825

A Real Time DSP Kernel for Concurrent Audio Tasks

David Reinhardt and Robert C. Maher

EuPhonics, Inc.

4840 Pearl East Circle, Suite 201E
Boulder, CO 80301-6115 USA

http://www.euphonics.com

Abstract:
It is desirable to share the resources of a single DSP microprocessor among multiple
concurrent audio tasks, but this poses a variety of practical problems. In this paper the
features of general-purpose operating systems are contrasted with the needs of typical
audio DSP processes, and the architecture of a simple yet powerful real time DSP kernel
is proposed.

1. Introduction
In this paper a description is given of a real time DSP operating system. The system is
intended to facilitate the simultaneous execution of multiple audio DSP tasks using a
single DSP microprocessor. The definition of the DSP operating system includes means
for loading and unloading DSP code modules, interconnecting processes and devices,
scheduling tasks for execution, and conveying messages between a host processor and the
tasks running on the DSP microprocessor.

The need for concurrent audio task execution is increasingly important for multimedia
audio accelerators. Computer-based games require multiple streams of 3D-localized
audio to be processed and mixed, soundtrack audio to be presented, and music synthesis
to be performed simultaneously and in real time. In the near future there will be a need in
the market for concurrent telephony and audio compression/decompression for internet
gaming and entertainment. Also, because specific technical and marketing requirements
change very rapidly, there is a need to avoid redesigning the entire audio DSP code base
every time a feature is added or modified. A DSP operating system enables the required
concurrent execution while also insulating the details of one task from the others [1].

The features and performance characteristics of a multi-processing audio DSP operating
system must be different from those of a conventional CPU. Audio DSP tasks have input
and/or output requirements that are continuous and high-bandwidth, and the allowable
processing delay, or latency, is usually tightly constrained. While conventional operating
systems are often driven by asynchronous events like mouse movements and key presses,
the audio DSP operating system must be more attuned to the arrival and departure of
audio sample data at a relatively constant rate [2].

DSP microprocessors are typically noted for the speed at which they execute repetitive
calculations (such as digital filters and FFTs), and for the amount of on-chip, fast
memory available. There is significant pressure on DSP programmers to minimize
execution time so that more concurrent tasks can be accommodated, and to minimize on-
chip memory requirements due to the cost of static RAM. Thus, the DSP operating
system must be optimized carefully to support only the most essential features in order to
minimize its memory footprint and processing overhead.

In the following sections we describe the data structures and algorithms necessary to
implement an audio DSP operating system. To draw a clear distinction between the
features and characteristics of a general-purpose operating system and the specific
requirements of a real time DSP, we use the term real time kernel (RTK), instead of
operating system, when describing the DSP control functions.

2. Characteristics of Audio DSP Tasks
As mentioned above, audio DSP tasks differ from general-purpose data processing tasks
because DSP processes must handle uninterruptible streams of data. Loss of data occurs
if the DSP process falls behind real time, producing an unacceptable click or pop in the
audio output. Even with careful buffering, the DSP RTK must provide a guaranteed rate
of execution for each task to avoid this problem.

The time-slicing paradigm of operating systems for general-purpose CPUs is generally
not satisfactory for DSP tasks. With time-slicing, each concurrent program is allowed to
run for a short slice of time before being suspended so that another program can run for
its time slice, and so on. It is quite difficult in such a preemptive system to guarantee
some minimum rate of execution for each program--especially when asynchronous
interruptions occur while the operating system handles keyboard activity, etc. The result
is that a program may become stalled for an indefinite period, which is not tolerable for
most audio DSP tasks.

Audio DSP programs are usually designed to process more than one data sample at a time
in order to spread the overhead of switching context and initializing registers across a
group of samples. The required number of input samples, the input block size, must
therefore be available before the DSP task can perform its block iteration. There must
also be enough space for the DSP task to store the corresponding block of output
samples. In other words, in order to execute one iteration the DSP task must have its
input/output requirements satisfied. Choosing a large block size typically increases
computational efficiency at the expense of requiring greater latency and more RAM.
Conversely, choosing a small block size reduces latency and memory requirements while
increasing processing overhead. This tradeoff is part of the careful engineering required
for concurrent audio processing.

Audio DSP tasks may require a synchronous or asynchronous control stream in addition
to the I/O data streams. For example, the coefficients of a digital filter may need to be

-2-

updated or the attenuation applied to samples entering a mixer may require a change.
The control stream is generally of much lower bandwidth than the data streams, but the
DSP task must still be able to respond quickly and correctly to the control messages.

3. Real Time Kernel (RTK) Features
The DSP RTK is responsible for managing the hardware resources, scheduling process
execution, and generally coordinating the movement of data through the DSP system.
The essential features provided by the RTK include:

· Managing hardware I/O devices
· Loading and unloading DSP processes
· Interconnecting processes
· Scheduling process execution
· Transferring control information to and from DSP processes
· Maintaining data structures

In order to minimize the size of the RTK, we adopt a trusted task model. The run-time
version of the RTK does not include extensive error detection and bounds checking. It is
the responsibility of the DSP programmer to ensure that the process obeys the
conventions for access to system registers, system memory, and other shared resources.
Furthermore, the programmer must avoid writing code that takes excessive time to
execute, locks out interrupts for extended periods, and other "antisocial" behavior.
Although the trusted task model may seem to place extra pressure on the DSP
programmer, it is actually the normal state of affairs for programmers whose code
typically ends up in a ROM: the code simply has to be right.

A simple audio DSP system is depicted in Figure 1. The example contains three
hardware devices (ADC, DAC, UART), and four DSP software processes (MIDI parser,
synthesizer, sample rate converter, mixer). Note that the data rates may differ from one
process to another and from input to output of a process. The MIDI data arriving at the
UART is asynchronous and low bandwidth, while the audio data streams from the ADC
and the synthesizer must be mixed synchronously.

The DSP RTK becomes active when the DSP is reset. The RTK may either contain
hardwired instructions to set up the specific DSP processes and devices, or the
instructions can be passed from a host processor. In any case, once the RTK has
completed the loading and initialization tasks it can begin executing the various
processes, enabling the transfer of data among the processes and devices, and dispatching
control messages from the host to the affected DSP processes.

4. Interconnection Using Data Streams
To implement a DSP system like the example of Figure 1, it is necessary for the data
stream out of a device or process to be conveyed to the input of another device or
process. In our non-preemptive RTK, only one process is actually executing during a

-3-

block iteration so the output block of the active process must be stored temporarily until
the process destined to receive the data becomes active. Furthermore, the block sizes of
the generating and receiving processes may not necessarily be the same, so the two
processes may execute a different number of times in any real time interval. We handle
these issues by defining a circular buffer FIFO (first-in first-out queue) in RAM to hold
the data between each pair of processes. The computational expense of the data buffers is
minimal, since most DSP architectures and instruction sets include excellent support for
FIFO modulo buffering.

The processes attached to a circular buffer maintain data structures describing the buffer
size, location, and current read/write positions. The process or device writing data into
the buffer has a write stream structure, and each process or device reading data from the
buffer has a read stream structure. This concept is shown in Figure 2 for an example in
which two read streams are attached to a buffer.

The write stream structure contains:

· Memory space flag (e.g., program or data, X or Y, etc.)
· Buffer base address
· Buffer current write address
· Buffer size
· Pointer to associated read stream structure

The memory space, base address and buffer size define the location and extent of the
modulo buffer. The current write address is updated as new data is written into the
buffer.

The read stream structure contains:

· Memory space flag
· Buffer base address
· Buffer current read address
· Buffer size
· Data available to be read
· Pointer to associated write stream
· Pointer to next read stream structure (or null)

The memory space, base address, current address, and size elements correspond to the
information in the write stream structure. The Data available to be read structure
member contains the number of data elements in the buffer that have not yet been read by
this stream. The available data count must be incremented when the associated write
stream places new data into the buffer, and decremented when the read stream takes data
out of the buffer.

If more than one read stream is attached to the buffer, a pointer (address) is provided to
identify the companion read stream. This allows the write stream to monitor the data

-4-

available counts for each read stream so that no new data is written over old data until all
of the read streams have had access to it.

The RTK contains functions to create and allocate write streams, buffers, and read
streams. In a typical implementation the RTK manages a fixed number of available
buffers with a range of pre-specified sizes.

In Figure 3 the simple example of Figure 1 is redrawn to show the interconnecting FIFOs
and streams.

5. Input/Output Hardware Devices
The DSP devices managed by the RTK require data structures to identify how to open,
initialize, perform data transfers, and close the device. The device data structures
contain:

· Pointer to Configuration function
· Pointer to Open function
· Pointer to Close function
· Pointer to associated read or write stream structure
· Pointer to interrupt service routine (ISR)

The function pointers are filled in with the address of the corresponding subroutine
supplied by the DSP programmer. The RTK retrieves the address from the structure and
jumps to that subroutine.

Similarly, the RTK jumps to the specified interrupt service routine when the device
asserts its interrupt. The RTK maintains a list identifying which interrupt corresponds to
which device. When an interrupt occurs the RTK determines which device requires
attention, then calls the corresponding ISR. The RTK passes the stream structure pointer
to the ISR so that data can be moved to or from the associated stream buffer.

6. Processes and Process Scheduling
Each DSP program is referred to as a process. The RTK represents each DSP process
using a linked list of process structures. Each process structure contains:

· Pointer to next structure in the process linked list
· Process ID number
· Process priority level
· List of Read Stream structures and minimum read block sizes
· List of Write Stream structures and minimum write block sizes
· Pointer to iteration function
· Pointer to host message function

-5-

The process ID number is a unique integer assigned to each active process by the host.
The priority level is an integer used to sort the active processes according to their
required response time. The RTK organizes the process linked list in order of decreasing
priority level. The read stream and write stream lists contain pointers to the structures
attached to this process, along with the minimum amount of input data and output space
that must be present before the process can run one iteration (the input and output block
sizes). The addresses of the iteration subroutine and the host message subroutine are also
included in the process structure. The process linked list is depicted in Figure 4.

If a new DSP process is started a process structure is created and inserted as a new
element in the process linked list. Similarly, a process to be deactivated has its process
structure removed from the linked list.

The RTK schedules process execution as follows. Beginning with the head of the
process linked list, the RTK compares the read and write stream pointers for the process
with the corresponding minimum read and write block sizes to see whether there is
sufficient space for the process to run one iteration. If there is sufficient input data and
output space, the RTK calls the process' iteration function, passing along the pointers to
the read and write streams. Once the iteration function is complete it returns control to
the RTK, which proceeds to examine the next process in the linked list. In this way, the
RTK executes each active process whenever sufficient data and space is available.
Process execution is throttled naturally by the rate at which data enters and leaves the
DSP system, so processes with high sample rate streams are executed more frequently
than processes with lower rate streams.

The process priority level can be used by the RTK to alter the simple round robin
execution algorithm. Since the process list is sorted in order of priority, the RTK
monitors and dispatches each process in turn until all of the processes at the highest
priority level are serviced. When the RTK determines that none of the highest priority
processes can run (due to insufficient input data or output space), the round robin
continues with the processes at the next lower priority level. After handling the processes
at that priority level, the RTK immediately returns to the head of the process list and
monitors the highest priority processes again. In other words, the higher priority
processes are given more frequent monitoring for execution. For a lower priority process
to be executed, the RTK must determine that all processes with higher priority have
currently satisfied their input/output requirements.

This priority level arrangement was developed to accommodate DSP systems in which
certain processes have very tight latency requirements to meet a certain performance
specification, such as loop or phase delay. It is also possible to adjust the execution
priority through carefully choosing the read and write stream FIFO sizes and minimum
block lengths.

It is important to note that no matter how clever the RTK scheduling algorithm may be,
the actual instruction rate of the DSP microprocessor must be sufficient to handle all of
the concurrent tasks. The DSP programmer and system integrator must still use good

-6-

engineering analysis to determine the worst-case processing load and latency for each
task [1].

7. Host Messages and Control
The RTK provides a uniform mechanism for the host system to communicate with the
kernel and each of the DSP processes. The first word of the host message contains the
process ID number (zero for the RTK itself, greater than zero for each DSP process). The
RTK decodes the first word of the message, then dispatches the host message function
from the process linked list. The host message function receives a pointer to the buffer
containing the remainder of the host message. Other than the first word being the ID
number, the message format is left entirely up to the programmer.

The manner in which the host informs the DSP system that a message is waiting to be
processed will vary from system to system. The host may communicate with the DSP via
a unidirectional host command port, a serial port, a bidirectional mailbox, or some other
arrangement. The RTK can be configured to handle the host message immediately if its
arrival generated an interrupt, or to defer acting on the host message until control is
passed back to the kernel at the completion of the currently executing process.

8. Discussion
DSP programs intended to run under the Real Time Kernel must obey the conventions for
passing parameters, updating read and write streams, receiving host messages, and so
forth. The DSP programmer needs to ensure that any processor state information,
register contents, and arithmetic modes be initialized at the start of the process iteration
function, since there is no guarantee regarding the order in which the RTK will execute
the active processes, nor is there usually any restriction on the processor resources
available to each concurrent task.

Since the RTK does not support memory allocation, task swapping, or other types of
dynamic processing, it is necessary for the concurrent tasks to be coordinated to all fit
within the available DSP system memory. This requires the various program modules to
be linked carefully to make efficient use of data and program RAM. We have found that
the details and constraints associated with using the RTK are small, and DSP
programmers can port their code to run under the RTK with minimal inconvenience.

The uniform manner in which the RTK treats each DSP process and device allows each
DSP program to be largely autonomous and self-contained. Each DSP process only
needs to know its read stream and write stream interfaces: it does not need to be aware of
where the streams are coming from or going to. This independence is significant for
several reasons. First, it allows the DSP system to be reorganized with new modules and
new interconnections without the need to rewrite large sections of code. Second,
individual modules can be debugged and tested by temporarily connecting the read and
write streams to a host port or some other off-line data logging mechanism. Finally, the
independence of each process enables the integration of object code modules from

-7-

different vendors without the need to divulge source code or other intellectual property.
This allows each vendor to test its own code modules under the RTK without the need to
coordinate closely with the other vendors. It also allows modules to be tuned and
updated individually.

In addition to the run-time version of the RTK, we have developed a profiling version
that includes the ability to count instruction cycles, monitor FIFO depths, and determine
processor idle time. These features are useful during the debugging and module
integration phases of development.

The run-time version of the RTK typically requires less than 1500 instructions and
enough data memory for the control structures and FIFOs (approximately 1000 words for
the system of Figure 3). The computational overhead for a typical system is about 0.5
MIPS.

9. Conclusions
In this paper we have described the features of a multitasking DSP Real Time Kernel.
The system allows concurrent execution of several audio tasks using a single DSP
microprocessor. The RTK is compact and efficient in order to minimize the processing
overhead and memory requirements. The process scheduling algorithms, stream
handling, and host message facilities are very general in nature, and suitable for use with
any standard DSP microprocessor architecture.

10. Acknowledgement
Portions of this paper are based on proof-of-concept development work and a confidential
report prepared by Duane K. Wise.

11. References
[1] Lapsley, P., Bier, J., Shoham, A., and Lee, E., DSP Processor Fundamentals,

New York, NY: IEEE Press, 1997.

[2] Berkeley Design Technology, Inc., DSP Design Tools and Methodologies,
Fremont, CA: Berkeley Design Technology, Inc., 1995.

-8-

Devices DSP Processes Device

UART MIDI Synthesizer Mixer DAC

8 kHz (8 - 22.05kHz)

Figure 1: An example multitasking DSP system with 3 devices (UART, A/D converter,
and D/A converter) and 4 processes (MIDI parser, synthesizer, sample rate converter, and
mixer) running on the DSP microprocessor.

Read Stream

Write Stream

~r;~~~~~~E I Read Stream

Circular Buffer

Figure 2: The DSP RTK uses circular buffers (FIFOs) to interconnect DSP processes and
devices. The Read Stream and Write Stream structures contain the current read and write
positions within the FIFO.

Write Read
Stream Stream

|UART |1 |MIDI Synthesizer Mixer DAC

Parser 22.05Hz

Figure 3: The example DSP system of Figure 1 with the circular buffers and read/write
streams shown explicitly.

Process I Process 2 Process 3 Process 4

Priority 1 Priority I Priority 2 Priority 2

R Stream R Stream R Stream R Stream

R Blocksize R Blocksize R Blocksize R Blocksize

W Stream W Stream W Stream W Stream

W Blocksize W Blocksize W Blocksize W Blocksize

Process Ptr Process Ptr Process Ptr Process Ptr

Next Ptr Next Ptr Next Ptr Next Ptr

Figure 4: A schematic representation of the process linked list. Each active process is
identified by a structure containing task information, priority, and a pointer to the next
process structure. The RTK does not execute the lower priority processes until all the
higher priority processes have been satisfied.

